Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Beilstein J Nanotechnol ; 15: 426-434, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655542

RESUMO

Deep eutectic solvents (DESs) have recently emerged as an alternative solvent for nanoparticle synthesis. There have been numerous advancements in the fabrication of silver nanoparticles (Ag NPs), but the potential of DESs in Ag NP synthesis was neither considered nor studied carefully. In this study, we present a novel strategy to fabricate Ag NPs in a DES (Ag NPs-DES). The DES composed of ᴅ-glucose, urea, and glycerol does not contain any anions to precipitate with Ag+ cations. Our Ag NPs-DES sample is used in a surface-enhanced Raman scattering (SERS) sensor. The two analytes for SERS quantitation are nitrofurantoin (NFT) and sulfadiazine (SDZ) whose residues can be traced down to 10-8 M. The highest enhancement factors (EFs) are competitive at 6.29 × 107 and 1.69 × 107 for NFT and SDZ, respectively. Besides, the linearity coefficients are extremely close to 1 in the range of 10-8 to 10-3 M of concentration, and the SERS substrate shows remarkable uniformity along with great selectivity. This powerful SERS performance indicates that DESs have tremendous potential in the synthesis of nanomaterials for biosensor substrate construction.

2.
Beilstein J Nanotechnol ; 15: 396-415, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633767

RESUMO

Antioxidants play an important role in the prevention of oxidative stress and have been widely used in medicine and healthcare. However, natural antioxidants have several limitations such as low stability, difficult long-term storage, and high cost of large-scale production. Along with significant advances in nanotechnology, nanomaterials have emerged as a promising solution to improve the limitations of natural antioxidants because of their high stability, easy storage, time effectiveness, and low cost. Among various types of nanomaterials exhibiting antioxidant activity, metal-based nanoantioxidants show excellent reactivity because of the presence of an unpaired electron in their atomic structure. In this review, we summarize some novel metal-based nanoantioxidants and classify them into two main categories, namely chain-breaking and preventive antioxidant nanomaterials. In addition, the applications of antioxidant nanomaterials in medicine and healthcare are also discussed. This review provides a deeper understanding of the mechanisms of metal-based nanoantioxidants and a guideline for using these nanomaterials in medicine and healthcare.

3.
ACS Appl Mater Interfaces ; 16(2): 2270-2282, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38181410

RESUMO

Dopant-induced electron redistribution on transition metal-based materials has long been considered an emerging new electrocatalyst that is expected to replace noble-metal-based electrocatalysts in natural seawater electrolysis; however, their practical applications remain extremely daunting due to their sluggish kinetics in natural seawater. In this work, we developed a facile strategy to synthesize the 3D sponge-like hierarchical structure of Ru-doped NiCoFeP nanosheet arrays derived from metal-organic frameworks with remarkable hydrogen evolution reaction (HER) performance in natural seawater. Based on experimental results and density functional theory calculations, Ru-doping-induced charge redistribution on the surface of metal active sites has been found, which can significantly enhance the HER activity. As a result, the 3D sponge-like hierarchical structure of Ru-NiCoFeP nanosheet arrays achieves low overpotentials of 52, 149, and 216 mV at 10, 100, and 500 mA cm-2 in freshwater alkaline, respectively. Notably, the electrocatalytic activity of the Ru-NiCoFeP electrocatalyst in simulated alkaline seawater and natural alkaline seawater is nearly the same as that in freshwater alkaline. This electrocatalyst exhibits superior catalytic properties with outstanding stability under a high current density of 85 mA cm-2 for more than 100 h in natural seawater, which outperforms state-of-the-art 20% Pt/C at high current density. Our work provides valuable guidelines for developing a low-cost and high-efficiency electrocatalyst for natural seawater splitting.

4.
Langmuir ; 39(44): 15799-15807, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37883714

RESUMO

Cyanides, which are extremely toxic chemicals that are rapidly absorbed into the human body and interact with cytochrome oxidase, strongly inhibit cellular respiration to body death with convulsions. Cyanide ions that exist in many forms in nature such as those found in apricot kernels, cassava roots, and bamboo shoots as cyanogenic glycosides are inevitably used in various industries, including gold and silver mining as well as in dyes and plastic industries. In this study, for the sake of developing ultrahigh-sensitive sensors for cyanide monitoring in a simple manner, we chemically synthesize Aucore-Agshell hybrid nanomaterials of different core/shell thicknesses for colorimetric sensors and fiber optical sensors. Their sensing principle relies on the formation of the Ag/Au cyanocomplex upon cyanide injection. The generated metal cyanocomplex induced changes in refractive indices, causing changes in properties of localized surface plasmon resonance (LSPR), i.e., optical absorbance change for the colorimetric sensors. For fiber optical sensors, the hybrid metal nanoparticles were immobilized on the fiber core surface and the metal cyanocomplex formation induced changes in the fiber cladding refractive index, enabling quantitative cyanide detection with ultrahigh sensitivity. The LSPR-based colorimetric sensor provided the lowest detectable cyanide concentration of 5 × 10-6 M, whereas the value for the fiber-based sensor was 8 × 10-11 M.

5.
Dalton Trans ; 52(35): 12185-12193, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37594409

RESUMO

Developing effective electrocatalysts for the oxygen evolution reaction (OER) that are highly efficient, abundantly available, inexpensive, and environmentally friendly is critical to improving the overall efficiency of water splitting and the large-scale development of water splitting technologies. We, herein, introduce a facile synthetic strategy for depositing the self-supported arrays of 1D-porous nanoneedles of a manganese cobalt oxide (Mn0.21Co2.79O4: MCO) thin film demonstrating an enhanced electrocatalytic activity for OER in an alkaline electrolyte. For this, an MCO film was synthesized via thermal treatment of a hydroxycarbonate film obtained from a hydrothermal route. The deposited films were characterized through scanning electron microscopy (SEM), X-ray diffractometry (XRD), energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). In contrast to a similar 1D-array of a pristine Co3O4 (CO) nanoneedle film, the MCO film exhibits a remarkably enhanced electrocatalytic performance in the OER with an 85 mV lower overpotential for the benchmark current density of 10 mA cm-2. In addition, the MCO film also demonstrates long-term electrochemical stability for the OER in 1.0 M KOH aqueous electrolyte.

6.
Micromachines (Basel) ; 13(11)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36363861

RESUMO

This article presents a review of many types of SERS sensors for food safety and environmental pollution monitoring based on detecting rhodamine. It introduces the basic concepts of substrates, enhancement factors, and mechanisms, devices' sensors integrated with the microstructure. Here, we review the state-of-the-art research in the field of rhodamine monitoring and highlight the applications of SERS sensors. The trends in the development of substrates for different applications have been mentioned with the aim of providing an overview of the development of different SERS substrates. Thus, an efficient approach for rhodamine detection has a good perspective for application in environmental monitoring.

7.
Nanotechnology ; 32(33)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-33979787

RESUMO

Measuring solution concentration plays an important role in chemical, biochemical, clinical diagnosis, environmental monitoring, and biological analyses. In this work, we develop a transmission-mode localized surface plasmon resonance sensor chip system and convenient method which is highly efficient, highly sensitive for detection sensing using multimode fiber. The plasmonically active sensor's surface AuNPs with high-density NPs were decorated onto 1 cm sensing length of various clad-free fiber in the form of homogeneous monolayer utilizing a self-assembly process for immobilization of the target molecule. The carboxyl bond is formed through a functional reaction on the sensor head. Using the significance in the refractive index difference and numerical aperture, which is caused by a variation in the concentration of measuring bovine serum albumin (BSA) protein which can be accurately measured by the output signal. The refractive index variation of the medium analyte layer can be converted to signal output power change at the He-Ne wavelength of 632.8 nm. The sensor detection limit was estimated to be 0.075 ng ml-1for BSA protein which shows high sensitivity compared to other types of label-free optical biosensors. This also leads to a possibility of finding the improvement in the sensitivity label-free biosensors. The conventional method should allow multimode fiber biosensors to become a possible replacement for conventional biosensing techniques based on fluorescence.

8.
Dalton Trans ; 50(20): 6962-6974, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-33929466

RESUMO

The potential applications of metal-enhanced fluorescence (MEF) devices include biosensors for the detection of trace amounts in biosciences, biotechnology, and pathogens that are relevant to medical diagnostics and food control. In the present study, the silver (Ag) film thickness (56 nm) of an MEF system was calibrated to maximize the depth-to-width ratio (Γ) of the surface plasmon resonance (SPR) active metal from reflectance dip curves. Upon plasmon coupling with thermally evaporated Ag, we demonstrated a 2.21-fold enhancement compared to the pristine flat substrate with the coefficient of variation (CV) ≈0.22% and the limit of detection (LOD) 0.001 mg L-1 of the concentration of an Alexa Fluor 488-labeled anti-C-reactive protein antibody (CRP@Alexa fluor 488). The structure was developed to simplify the in situ generation of biosensors for the surface-enhanced Raman spectroscopy (SERS) to determine Rhodamine B (RhB) with a highly robust performance. The procedure presented a simple and rapid sample pretreatment for the determination of RhB with a limit of quantification of 10-10 M and a satisfactory linear response (0.98). The results showed the excellent performance of the surface plasmon coupled emission (SPCE), which opens up possibilities for the accurate detection of small-volume and low-concentration target analytes due to the improved sensitivity and signal-to-noise ratio (SNR).


Assuntos
Proteína C-Reativa , Doenças Cardiovasculares , Ouro , Rodaminas , Prata , Ressonância de Plasmônio de Superfície
9.
Biosens Bioelectron ; 182: 113192, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33819902

RESUMO

Rapid, accurate, portable, and large-scale diagnostic technologies for the detection of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) are crucial for controlling the coronavirus disease (COVID-19). The current standard technologies, i.e., reverse-transcription polymerase chain reaction, serological assays, and computed tomography (CT) exhibit practical limitations and challenges in case of massive and rapid testing. Biosensors, particularly electrochemical conducting polymer (CP)-based biosensors, are considered as potential alternatives owing to their large advantages such as high selectivity and sensitivity, rapid detection, low cost, simplicity, flexibility, long self-life, and ease of use. Therefore, CP-based biosensors can serve as multisensors, mobile biosensors, and wearable biosensors, facilitating the development of point-of-care (POC) systems and home-use biosensors for COVID-19 detection. However, the application of these biosensors for COVID-19 entails several challenges related to their degradation, low crystallinity, charge transport properties, and weak interaction with biomarkers. To overcome these problems, this study provides scientific evidence for the potential applications of CP-based electrochemical biosensors in COVID-19 detection based on their applications for the detection of various biomarkers such as DNA/RNA, proteins, whole viruses, and antigens. We then propose promising strategies for the development of CP-based electrochemical biosensors for COVID-19 detection.


Assuntos
Técnicas Biossensoriais , COVID-19/diagnóstico , Técnicas Eletroquímicas , SARS-CoV-2/isolamento & purificação , Biomarcadores , Humanos , Polímeros
10.
RSC Adv ; 10(51): 30858-30869, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35516028

RESUMO

The development of improved methods for the synthesis of monodisperse gold nanoparticles (Au NPs) is of high priority because they can be used as substrates for surface-enhanced Raman scattering (SERS) applications relating to biological lipids. Herein, Au NPs have been successfully synthesized via a seed-mediated growth method. The LSPR peak is controlled via adjusting the gold nanoseed component, and different fabrication methods were studied to establish the effect of sonication time on NP size. The simple, facile, and room-temperature method is based on a conventional ultrasonic bath, which leads to ultrasonic energy effects on the size and morphology of the Au NPs. This research offers new opportunities for the production of highly monodispersed spherical Au NPs without the use of a magnetic stirrer method, as evidenced by ultraviolet-visible reflectance spectra and scanning electron microscopy (SEM) analysis. SEM images indicate that the spherical Au NP colloidal particles are stable and reliable, which paves the way for their use as a nanostructured biosensor platform that can be exploited for multiple applications, for example, in materials science, sensing, catalysis, medicine, food safety, biomedicine, etc. The highest enhancement factor that could be achieved in terms of the SERS enhancement activity of these Au NP arrays was determined using 10-9 M serotonin (5-hydroxytryptamine, 5-HT) as the Raman probe molecules.

11.
Micromachines (Basel) ; 9(9)2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30424393

RESUMO

We demonstrate the enhancement of fluorescence emission from a dye, 5-carboxyfluorescein (FAM), which couples with surface plasmons at the spectral channels of excitation and emission. Experiments and calculations revealed that bimetallic (gold-silver) plasmon, as compared to the monometallic ones, allowed such coupling to be enhanced, at both the spectral channels. We achieved the maximum fluorescence enhancement level of 46.5-fold, with markedly high reproducibility (coefficient of variation ~ 0.5%) at a FAM concentration of 10 nM. We also found that higher fluorescence enhancement was more likely to be reproducible. This encourages the use of this technology for practical applications in fluorescence-based biochemical assays. Moreover, we investigated a FAM concentration-dependent enhancement of fluorescence. It was found that fluorescence enhancement decreased and saturated at above 10 nM concentration possibly due to partial photo-bleaching of FAM molecules.

12.
Micromachines (Basel) ; 9(9)2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30424404

RESUMO

We present a label-free optical fiber based sensor device to detect copper ions (Cu2+) in water. A multimode optical fiber, with its polymer cladding removed along a 1-cm length, is used for the optical sensor head, where the injected Cu2+ in the liquid phase acts as a liquid cladding for the optical mode. The various Cu2+ concentrations modulate the numerical aperture (NA) of the liquid cladding waveguide part. The degree of NA mismatch between the liquid cladding and solid cladding guided parts gives rise to an optical power transmittance change, forming the sensing principle. The presented liquid cladding fiber sensor exhibits a minimum resolvable refractive index of 2.48 × 10-6. For Cu2+ detection, we functionalize the sensor head surface (fiber core) using chitosan conjugated ethylenediaminetetraacetic acid (EDTA) which captures Cu2+ effectively due to the enhanced chelating effects. We obtain a limit of detection of Cu2+ of 1.62 nM (104 ppt), which is significantly lower than the tolerable level in drinking water (~30 µM), and achieve a dynamic range of 1 mM. The simple structure of the sensor head and the sensing system ensures the potential capability of being miniaturized. This may allow for in-situ, highly-sensitive, heavy metal sensors in a compact format.

13.
Small ; 14(32): e1801385, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30003662

RESUMO

Plasmonic enhancement of fluorescence from SYBR Green I conjugated with a double-stranded DNA (dsDNA) amplicon is demonstrated on polymerase chain reaction (PCR) products. Theoretical computation leads to use of the bimetallic (Au 2 nm-Ag 50 nm) surface plasmons due to larger local fields (higher quality factors) than monometallic (Ag or Au) ones at both dye excitation and emission wavelengths simultaneously, optimizing fluorescence enhancement with surface plasmon coupled emission (SPCE). Two kinds of reverse Kretschmann configurations are used, which favor, in signal-to-noise ratio, a fluorescence assay that uses optically dense buffer such as blood plasma. The fluorescence enhancement (12.9 fold at maximum) with remarkably high reproducibility (coefficient of variation (CV) < 1%) is experimentally demonstrated. This facilitates credible quantitation of enhanced fluorescence, however unlikely to obtain by localized surface plasmons. The plasmon-induced optical gain of 46 dB due to SPCE-active dye molecules is also estimated. The fluorescence enhancement technologies with PCR enables LOD of the dsDNA template concentration of ≈400 fg µL-1 (CV < 1%), the lowest ever reported in DNA fluorescence assay to date. SPCE also reduces photobleaching significantly. These technologies can be extended for a highly reproducible and sufficiently sensitive fluorescence assay with small volumes of analytes in multiplexed diagnostics.


Assuntos
DNA/análise , Ressonância de Plasmônio de Superfície , Eletricidade , Fluorescência , Ouro/química , Limite de Detecção , Modelos Teóricos , Oxigênio/química , Gases em Plasma/química , Reprodutibilidade dos Testes
14.
RSC Adv ; 8(14): 7855-7862, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35539129

RESUMO

We present the immunoassay of tau proteins (total tau and phosphorylated tau) in human sera using surface plasmon resonance (SPR) fiber sensors. This assay aimed at harvesting the advantages of using both SPR fiber sensors and a blood-based assay to demonstrate label-free point-of-care-testing (POCT) patient-friendly assay in a compact format for the early diagnosis of Alzheimer's disease (AD). For conducting the assay, we used human sera of 40 subjects divided into halves, which were grouped into AD patients and control groups according to a number of neuropsychological tests. We found that on an average, the concentrations of both total tau and phosphorylated tau proteins (all known to be higher in cerebrospinal fluid (CSF) and the brain) turned out to be higher in human sera of AD patients than in controls. The limits of detection of total tau and phosphorylated tau proteins were 2.4 pg mL-1 and 1.6 pg mL-1, respectively. In particular, it was found that the AD group exhibited average concentration of total tau proteins 6-fold higher than the control group, while concentration of phosphorylated tau proteins was 3-fold higher than that of the control. We can attribute this inhomogeneity between both types of tau proteins (in terms of increase of control-to-AD in average concentration) to un-phosphorylated tau proteins being more likely to be produced in blood than phosphorylated tau proteins, which possibly is one of the potential key elements playing an important role in AD progress.

15.
ACS Appl Mater Interfaces ; 9(37): 31478-31487, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28849907

RESUMO

We demonstrated modulation of the waveguide mode mismatch via liquid cladding of the controllable refractive index for label-free quantitative detection of concentration of chemical or biological substances. A multimode optical fiber with its core exposed was used as the sensor head with the suitable chemical modification of its surface. Injected analyte liquid itself formed the liquid cladding for the waveguide. We found that modulation of the concentration of analyte injected enables a degree of the waveguide mode mismatch to be controlled, resulting in sensitive change in optical power transmission, which was utilized for its real-time quantitative assay. We applied the device to quantitating concentration of glycerol and bovine serum albumin (BSA) solutions. We obtained experimentally the limit of detection (LOD) of glycerol concentration, 0.001% (volume ratio), corresponding to the resolvable index resolution of ∼1.02 × 10-6 RIU (refractive index unit). The presented sensors also exhibited reasonably good reproducibility. In BSA detection, the sensor device response was sensitive to change in the refractive indices not only of liquid bulk but also of layers just above the sensing surface with higher sensitivity, providing the LOD experimentally as ∼3.7 ng/mL (mass coverage of ∼30 pg/mm2). A theoretical model was also presented to invoke both mode mismatch modulation and evanescent field absorption for understanding of the transmission change, offering a theoretical background for designing the sensor head structure for a given analyte. Interestingly, the device sensing length played little role in the important sensor characteristics such as sensitivity, unlike most of the waveguide-based sensors. This unraveled the possibility of realizing a highly simple structured label-free sensor for point-of-care testing in a real-time manner via an optical waveguide with liquid cladding. This required neither metal nor dielectric coating but still produced sensitivity comparable to those of other types of label-free sensors such as plasmonic fiber ones.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA