Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMJ Open ; 14(1): e076954, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38262641

RESUMO

OBJECTIVES: To aid in selecting the optimal artificial intelligence (AI) solution for clinical application, we directly compared performances of selected representative custom-trained or commercial classification, detection and segmentation models for fracture detection on musculoskeletal radiographs of the distal radius by aligning their outputs. DESIGN AND SETTING: This single-centre retrospective study was conducted on a random subset of emergency department radiographs from 2008 to 2018 of the distal radius in Germany. MATERIALS AND METHODS: An image set was created to be compatible with training and testing classification and segmentation models by annotating examinations for fractures and overlaying fracture masks, if applicable. Representative classification and segmentation models were trained on 80% of the data. After output binarisation, their derived fracture detection performances as well as that of a standard commercially available solution were compared on the remaining X-rays (20%) using mainly accuracy and area under the receiver operating characteristic (AUROC). RESULTS: A total of 2856 examinations with 712 (24.9%) fractures were included in the analysis. Accuracies reached up to 0.97 for the classification model, 0.94 for the segmentation model and 0.95 for BoneView. Cohen's kappa was at least 0.80 in pairwise comparisons, while Fleiss' kappa was 0.83 for all models. Fracture predictions were visualised with all three methods at different levels of detail, ranking from downsampled image region for classification over bounding box for detection to single pixel-level delineation for segmentation. CONCLUSIONS: All three investigated approaches reached high performances for detection of distal radius fractures with simple preprocessing and postprocessing protocols on the custom-trained models. Despite their underlying structural differences, selection of one's fracture analysis AI tool in the frame of this study reduces to the desired flavour of automation: automated classification, AI-assisted manual fracture reading or minimised false negatives.


Assuntos
Aprendizado Profundo , Fraturas Ósseas , Humanos , Raios X , Inteligência Artificial , Rádio (Anatomia) , Estudos Retrospectivos
2.
Int J Comput Assist Radiol Surg ; 18(5): 819-826, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36729290

RESUMO

PURPOSE: Artificial intelligence in computer vision has been increasingly adapted in clinical application since the implementation of neural networks, potentially providing incremental information beyond the mere detection of pathology. As its algorithmic approach propagates input variation, neural networks could be used to identify and evaluate relevant image features. In this study, we introduce a basic dataset structure and demonstrate a pertaining use case. METHODS: A multidimensional classification of ankle x-rays (n = 1493) rating a variety of features including fracture certainty was used to confirm its usability for separating input variations. We trained a customized neural network on the task of fracture detection using a state-of-the-art preprocessing and training protocol. By grouping the radiographs into subsets according to their image features, the influence of selected features on model performance was evaluated via selective training. RESULTS: The models trained on our dataset outperformed most comparable models of current literature with an ROC AUC of 0.943. Excluding ankle x-rays with signs of surgery improved fracture classification performance (AUC 0.955), while limiting the training set to only healthy ankles with and without fracture had no consistent effect. CONCLUSION: Using multiclass datasets and comparing model performance, we were able to demonstrate signs of surgery as a confounding factor, which, following elimination, improved our model. Also eliminating pathologies other than fracture in contrast had no effect on model performance, suggesting a beneficial influence of feature variability for robust model training. Thus, multiclass datasets allow for evaluation of distinct image features, deepening our understanding of pathology imaging.


Assuntos
Inteligência Artificial , Fraturas Ósseas , Humanos , Tornozelo , Redes Neurais de Computação , Radiografia , Diagnóstico por Imagem , Fraturas Ósseas/diagnóstico por imagem
3.
Int J Comput Assist Radiol Surg ; 17(11): 2093-2101, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35665881

RESUMO

PURPOSE: Computer-assisted techniques play an important role in craniomaxillofacial surgery. As segmentation of three-dimensional medical imaging represents a cornerstone for these procedures, the present study was aiming at investigating a deep learning approach for automated segmentation of head CT scans. METHODS: The deep learning approach of this study was based on the patchwork toolbox, using a multiscale stack of 3D convolutional neural networks. The images were split into nested patches using a fixed 3D matrix size with decreasing physical size in a pyramid format of four scale depths. Manual segmentation of 18 craniomaxillofacial structures was performed in 20 CT scans, of which 15 were used for the training of the deep learning network and five were used for validation of the results of automated segmentation. Segmentation accuracy was evaluated by Dice similarity coefficient (DSC), surface DSC, 95% Hausdorff distance (95HD) and average symmetric surface distance (ASSD). RESULTS: Mean for DSC was 0.81 ± 0.13 (range: 0.61 [mental foramen] - 0.98 [mandible]). Mean Surface DSC was 0.94 ± 0.06 (range: 0.87 [mental foramen] - 0.99 [mandible]), with values > 0.9 for all structures but the mental foramen. Mean 95HD was 1.93 ± 2.05 mm (range: 1.00 [mandible] - 4.12 mm [maxillary sinus]) and for ASSD, a mean of 0.42 ± 0.44 mm (range: 0.09 [mandible] - 1.19 mm [mental foramen]) was found, with values < 1 mm for all structures but the mental foramen. CONCLUSION: In this study, high accuracy of automated segmentation of a variety of craniomaxillofacial structures could be demonstrated, suggesting this approach to be suitable for the incorporation into a computer-assisted craniomaxillofacial surgery workflow. The small amount of training data required and the flexibility of an open source-based network architecture enable a broad variety of clinical and research applications.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Computadores , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA