Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 7: 392, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733925

RESUMO

African swine fever (ASF) is a devastating disease of swine and the most important disease for the pork industry. Since the outbreaks in 2007 in the Caucasian region, it has been spreading to the West and East quite swiftly. In this study we have analyzed the clinical signs and pathological features of the first outbreaks on ASF in Vietnam in 2019, caused by an isolate with 100% similarity to the genotype II (p72) isolates from Georgia in 2007 and China in 2018. The disease onset with a peracute to acute clinical course with high mortality. Some animals showed very unspecific clinical signs with other showing severe hyperthermia, respiratory distress, diarrhea, or vomit. Hemorrhagic splenomegaly and lymphadenitis were the main lesions observed at post mortem examination, with histopathological changes confirming the lymphoid depletion and multiorganic hemorrhages. Monocyte-macrophages were identified by means of immunohistochemical methods as the main target cell for the ASF virus in tissue sections.

2.
PLoS One ; 7(10): e44581, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23077483

RESUMO

Respiratory syncytial virus (RSV), a prominent cause of airway morbidity in children, maintains an excessive hospitalization rate despite decades of research. Host factors are assumed to influence the disease severity. As a first step toward identifying the underlying resistance mechanisms, we recently showed that inbred mouse strains differ dramatically as regards their susceptibility to pneumonia virus of mice (PVM), the murine counterpart of RSV. PVM infection in mice has been shown to faithfully mimic the severe RSV disease in human infants. This study aimed at dissecting the remarkable PVM-resistance shown by the SJL/J strain. To characterize its genetic component, we assessed clinical, physiopathological, and virological resistance/susceptibility traits in large first (F1) and second (F2) generations obtained by crossing the SJL/J (resistant) and 129/Sv (susceptible) strains. Then, to acquire conclusive in vivo evidence in support of the hypothesis that certain radiosensitive hematopoietic cells might play a significant role in PVM-resistance, we monitored the same resistance/susceptibility traits in mock- and γ-irradiated SJL/J mice. Segregation analysis showed that (i) PVM-resistance is polygenic, (ii) the resistance alleles are recessive, and (iii) all resistance-encoding alleles are concentrated in SJL/J. Furthermore, there was no alteration of SJL/J PVM-resistance after immunosuppression by γ-irradiation, which suggests that adaptive immunity is not involved. We conclude that host resistance to pneumoviruses should be amenable to genetic dissection in this mouse model and that radioresistant lung epithelial cells and/or alveolar macrophages may control the clinical severity of pneumovirus-associated lung disease.


Assuntos
Bronquiolite/imunologia , Modelos Animais de Doenças , Vírus da Pneumonia Murina/imunologia , Vírus Sinciciais Respiratórios/isolamento & purificação , Animais , Bronquiolite/genética , Bronquiolite/virologia , Predisposição Genética para Doença , Humanos , Lactente , Camundongos
3.
Microbes Infect ; 8(3): 621-7, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16458035

RESUMO

Toll-like receptors (TLR) are an important component in the innate immune response to a wide variety of pathogens. Recently, a series of studies has addressed the hypothesis that TLR4 also participates in the host innate response against respiratory syncytial virus (RSV), the leading cause of lower respiratory tract infections in infants and young children. In most of the studies available, RSV, which is not a natural pathogen of mice, has been systematically used in mouse models of human bronchiolitis, with conflicting results. Pneumonia virus of mice (PVM), a member of the pneumovirus genus, shares many similarities with RSV. The serological and structural relationships that exist between them suggest that the immune response to these viruses may be similar in their respective natural hosts. To determine the role of TLR4 in host defense against PVM, TLR4-competent and TLR4-deficient mice were intranasally infected with PVM. Variation of body weight, pulmonary function values, histopathology, and pulmonary viral loads were analyzed. None of the investigated clinical, functional, histological and virological parameters was different between strains, which demonstrates that the sensitivity of the mouse to its natural pneumovirus infection is independent of the presence or absence of TLR4 sensing.


Assuntos
Pulmão/metabolismo , Pulmão/virologia , Infecções por Pneumovirus/metabolismo , Respirovirus/fisiologia , Receptor 4 Toll-Like/metabolismo , Animais , Peso Corporal , Feminino , Regulação da Expressão Gênica , Pulmão/patologia , Camundongos , Respiração , Receptor 4 Toll-Like/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA