Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
EFSA J ; 21(4): e07936, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37077299

RESUMO

The European Commission requested an analysis of the Chronic Wasting Disease (CWD) monitoring programme in Norway, Sweden, Finland, Iceland, Estonia, Latvia, Lithuania and Poland (9 January 2017-28 February 2022). Thirteen cases were detected in reindeer, 15 in moose and 3 in red deer. They showed two phenotypes, distinguished by the presence or absence of detectable disease-associated normal cellular prion protein (PrP) in lymphoreticular tissues. CWD was detected for the first time in Finland, Sweden and in other areas of Norway. In countries where the disease was not detected, the evidence was insufficient to rule out its presence altogether. Where cases were detected, the prevalence was below 1%. The data also suggest that the high-risk target groups for surveillance should be revised, and 'road kill' removed. Data show that, in addition to differences in age and sex, there are differences in the prion protein gene (PRNP) genotypes between positive and negative wild reindeer. A stepwise framework has been proposed with expanded minimum background surveillance to be implemented in European countries with relevant cervid species. Additional surveillance may include ad hoc surveys for four different objectives, specific to countries with/without cases, focusing on parallel testing of obex and lymph nodes from adult cervids in high-risk target groups, sustained over time, using sampling units and a data-driven design prevalence. Criteria for assessing the probability of CWD presence have been outlined, based on the definition of the geographical area, an annual assessment of risk of introduction, sustained minimum background surveillance, training and engagement of stakeholders and a surveillance programme based on data-driven parameters. All positive cases should be genotyped. Sample sizes for negative samples have been proposed to detect and estimate the frequency of PRNP polymorphisms. Double-strand sequencing of the entire PRNP open reading frame should be undertaken for all selected samples, with data collated in a centralised collection system at EU level.

2.
Foods ; 12(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36832899

RESUMO

Prion diseases are transmissible neurodegenerative disorders that affect humans and ruminant species consumed by humans. Ruminant prion diseases include bovine spongiform encephalopathy (BSE) in cattle, scrapie in sheep and goats and chronic wasting disease (CWD) in cervids. In 1996, prions causing BSE were identified as the cause of a new prion disease in humans; variant Creutzfeldt-Jakob disease (vCJD). This sparked a food safety crisis and unprecedented protective measures to reduce human exposure to livestock prions. CWD continues to spread in North America, and now affects free-ranging and/or farmed cervids in 30 US states and four Canadian provinces. The recent discovery in Europe of previously unrecognized CWD strains has further heightened concerns about CWD as a food pathogen. The escalating CWD prevalence in enzootic areas and its appearance in a new species (reindeer) and new geographical locations, increase human exposure and the risk of CWD strain adaptation to humans. No cases of human prion disease caused by CWD have been recorded, and most experimental data suggest that the zoonotic risk of CWD is very low. However, the understanding of these diseases is still incomplete (e.g., origin, transmission properties and ecology), suggesting that precautionary measures should be implemented to minimize human exposure.

4.
Neuromuscul Disord ; 31(1): 56-68, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33334662

RESUMO

Mutations in the N-myc downstream-regulated gene 1 (NDRG1) cause degenerative polyneuropathy in ways that are poorly understood. We have investigated Alaskan Malamute dogs with neuropathy caused by a missense mutation in NDRG1. In affected animals, nerve levels of NDRG1 protein were reduced by more than 70% (p< 0.03). Nerve fibers were thinly myelinated, loss of large myelinated fibers was pronounced and teased fiber preparations showed both demyelination and remyelination. Inclusions of filamentous material containing actin were present in adaxonal Schwann cell cytoplasm and Schmidt-Lanterman clefts. This condition strongly resembles the human Charcot-Marie-Tooth type 4D. However, the focally folded myelin with adaxonal infoldings segregating the axon found in this study are ultrastructural changes not described in the human disease. Furthermore, lipidomic analysis revealed a profound loss of peripheral nerve lipids. Our data suggest that the low levels of mutant NDRG1 is insufficient to support Schwann cells in maintaining myelin homeostasis.


Assuntos
Proteínas de Ciclo Celular , Doença de Charcot-Marie-Tooth/veterinária , Doenças do Cão/genética , Peptídeos e Proteínas de Sinalização Intracelular , Células de Schwann/metabolismo , Animais , Doença de Charcot-Marie-Tooth/genética , Cães , Feminino , Masculino , Mutação/genética , Mutação de Sentido Incorreto , Bainha de Mielina , Polineuropatias/genética
5.
Sci Rep ; 10(1): 22168, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33335134

RESUMO

Prion diseases constitute a class of invariably fatal and degenerative encephalopathies. Chronic Wasting Disease (CWD) is a contagious prion disease among cervids, which is spreading and causing marked population declines in USA and Canada. The first outbreak of CWD in Europe was discovered in a reindeer population in Norway in 2016. In the worst-case scenario with continental-wide spreading of CWD in Eurasia, an annual harvest of around 4 million cervids is at stake only in Europe, with huge economic and cultural significance. An in situ origin of CWD was suspected, and it appear urgent to identify the likely cause to prevent future emergences. Here, we document the novel phenomenon of extensive antler cannibalism prior to shedding among reindeer in the CWD-infected population. The extent of antler cannibalism increased over the last decades when CWD emerged, and included ingestion of vascularized antlers. Ingestion of tissues from conspecifics is a risk factor for the emergence of prion diseases, where the presence of extensive antler cannibalism opens the intriguing possibility of a 'Kuru-analogue' origin of CWD among the reindeer in Europe. Based on general insight on pathology of prion diseases and strain selection processes, we propose an hypothesis for how contagious CWD may emerge from sporadic CWD under the unique epidemiological conditions we document here. More research is required to document the presence of prions in reindeer antlers, and whether antler cannibalism actually led to a strain selection process and the emergence of a contagious form of CWD from a sporadic form of CWD.


Assuntos
Chifres de Veado , Canibalismo , Rena , Animais , Animais Selvagens , Noruega
6.
Free Radic Biol Med ; 152: 348-354, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32259578

RESUMO

The DNA glycosylase Neil2 is a member of the base excision repair (BER) family of enzymes, which are important for repair of oxidative DNA damage. Specifically, Neil2 participates in repair of oxidized bases in single-stranded DNA of transcriptionally active genes. Mice with genetic ablation of Neil2 (Neil2-/-) display no overt phenotypes, but an age-dependent accumulation of oxidative DNA damage and increased inflammatory responsiveness. In young mice intra-cerebrally inoculated with prions, vigorous prion propagation starts rapidly in the germinal follicles of the spleen due to inoculum spillover. Here, we compare experimental prion disease in Neil2-/- mice with that in wild-type mice at disease onset and end-stage. Specifically, we investigated disease progression, accumulation of DNA damage, and mitochondrial respiratory complex activity in brain and spleen. We used genome-wide RNA sequencing of the spleen to compare the immune responses to prion propagation between the two groups of mice, at both onset and end-stage prion disease. The Neil2-/- mice deteriorated more rapidly than wild-type mice after onset of clinical signs. Levels of DNA damage in brain increased in both mouse groups, slightly more in the Neil2-/- mice. Transcriptome data from spleen at disease onset were similar between the mouse groups with moderate genomic responses. However, at end-stage a substantial response was evident in the wild-type mice but not in Neil2-/- mice. Our data show that Neil2 counteracts toxic signaling in clinical prion disease, and this is separate from gross pathological manifestations and PrPSc accumulation.


Assuntos
DNA Glicosilases , Doenças Priônicas , Animais , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Reparo do DNA , Genômica , Camundongos , Baço/metabolismo
7.
FASEB J ; 34(2): 2359-2375, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31907995

RESUMO

Studies in mice with ablation of Prnp, the gene that encodes the cellular prion protein (PrPC ), have led to the hypothesis that PrPC is important for peripheral nerve myelin maintenance. Here, we have used a nontransgenic animal model to put this idea to the test; namely, goats that, due to a naturally occurring nonsense mutation, lack PrPC . Teased nerve fiber preparation revealed a demyelinating pathology in goats without PrPC . Affected nerves were invaded by macrophages and T cells and displayed vacuolated fibers, shrunken axons, and onion bulbs. Peripheral nerve lipid composition was similar in young goats with or without PrPC , but markedly different between corresponding groups of adult goats, reflecting the progressive nature of the neuropathy. This is the first report of a subclinical demyelinating polyneuropathy caused by loss of PrPC function in a nontransgenic mammal.


Assuntos
Doenças Desmielinizantes/imunologia , Cabras/imunologia , Bainha de Mielina/imunologia , Polineuropatias/imunologia , Proteínas PrPC/deficiência , Animais , Doenças Desmielinizantes/patologia , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Bainha de Mielina/patologia , Polineuropatias/patologia , Proteínas PrPC/imunologia , Linfócitos T/imunologia , Linfócitos T/patologia
8.
Vet Res ; 51(1): 1, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31924264

RESUMO

Prion diseases are progressive and fatal, neurodegenerative disorders described in humans and animals. According to the "protein-only" hypothesis, the normal host-encoded prion protein (PrPC) is converted into a pathological and infectious form (PrPSc) in these diseases. Transgenic knockout models have shown that PrPC is a prerequisite for the development of prion disease. In Norwegian dairy goats, a mutation (Ter) in the prion protein gene (PRNP) effectively blocks PrPC synthesis. We inoculated 12 goats (4 PRNP+/+, 4 PRNP+/Ter, and 4 PRNPTer/Ter) intracerebrally with goat scrapie prions. The mean incubation time until clinical signs of prion disease was 601 days post-inoculation (dpi) in PRNP+/+ goats and 773 dpi in PRNP+/Ter goats. PrPSc and vacuolation were similarly distributed in the central nervous system (CNS) of both groups and observed in all brain regions and segments of the spinal cord. Generally, accumulation of PrPSc was limited in peripheral organs, but all PRNP+/+ goats and 1 of 4 PRNP+/Ter goats were positive in head lymph nodes. The four PRNPTer/Ter goats remained healthy, without clinical signs of prion disease, and were euthanized 1260 dpi. As expected, no accumulation of PrPSc was observed in the CNS or peripheral tissues of this group, as assessed by immunohistochemistry, enzyme immunoassay, and real-time quaking-induced conversion. Our study shows for the first time that animals devoid of PrPC due to a natural mutation do not propagate prions and are resistant to scrapie. Clinical onset of disease is delayed in heterozygous goats expressing about 50% of PrPC levels.


Assuntos
Resistência à Doença/genética , Doenças das Cabras/genética , Proteínas PrPC/deficiência , Scrapie/genética , Animais , Feminino , Cabras
9.
Prion ; 14(1): 1-10, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-31852336

RESUMO

The emergence of CWD in Europe in 2016 and the first natural infection in wild reindeer warranted disease management. This led to the testing of 2424 hunted or culled reindeer during 2016-2018, from the infected subpopulation in the Nordfjella mountain range in Southern Norway. To identify any association between PRNP variation and CWD susceptibility, we characterized the open reading frame of the PRNP gene in 19 CWD positive reindeer and in 101 age category- and sex-matched CWD negative controls. Seven variant positions were identified: 6 single nucleotide variants (SNVs) and a 24 base pair (bp) deletion located between nucleotide position 238 and 272, encoding four instead of five octapeptide repeats. With a single exception, all variant positions but one were predicted to be non-synonymous. The synonymous SNV and the deletion are novel in reindeer. Various combinations of the non-synonymous variant positions resulted in the identification of five PRNP alleles (A-E) that structured into 14 genotypes. We identified an increased CWD risk in reindeer carrying two copies of the most common allele, A, coding for serine in position 225 (Ser225) and in those carrying allele A together with the 24 bp deletion.


Assuntos
Variação Genética , Proteínas Priônicas/genética , Rena/genética , Doença de Emaciação Crônica/genética , Animais , Linhagem Celular Tumoral , Frequência do Gene/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Geografia , Humanos , Noruega , Fases de Leitura Aberta , Proteínas Priônicas/metabolismo , Fatores de Risco
10.
BMC Vet Res ; 15(1): 121, 2019 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-31029158

RESUMO

BACKGROUND: Mutations in the N-myc downstream-regulated gene 1 (NDRG1) can cause degenerative polyneuropathy in humans, dogs, and rodents. In humans, this motor and sensory neuropathy is known as Charcot-Marie-Tooth disease type 4D, and it is assumed that analogous canine diseases can be used as models for this disease. NDRG1 is also regarded as a metastasis-suppressor in several malignancies. The tissue distribution of NDRG1 has been described in humans and rodents, but this has not been studied in the dog. RESULTS: By immunolabeling and Western blotting, we present a detailed mapping of NDRG1 in dog tissues and primary canine Schwann cell cultures, with particular emphasis on peripheral nerves. High levels of phosphorylated NDRG1 appear in distinct subcellular localizations of the Schwann cells, suggesting signaling-driven rerouting of the protein. In a nerve from an Alaskan malamute homozygous for the disease-causing Gly98Val mutation in NDRG1, this signal was absent. Furthermore, NDRG1 is present in canine epithelial cells, predominantly in the cytosolic compartment, often with basolateral localization. Constitutive expression also occurs in mesenchymal cells, including developing spermatids that are transiently positive for NDRG1. In some cells, NDRG1 localize to centrosomes. CONCLUSIONS: Overall, canine NDRG1 shows a cell and context-dependent localization. Our data from peripheral nerves and primary Schwann cell cultures suggest that the subcellular localization of NDRG1 in Schwann cells is dynamically influenced by signaling events leading to reversible phosphorylation of the protein. We propose that disease-causing mutations in NDRG1 can disrupt signaling in myelinating Schwann cells, causing disturbance in myelin homeostasis and axonal-glial cross talk, thereby precipitating polyneuropathy.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Doenças do Cão/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Polineuropatias/veterinária , Células de Schwann/metabolismo , Animais , Anticorpos , Proteínas de Ciclo Celular/genética , Células Cultivadas , Cães , Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Células-Tronco Mesenquimais , Mutação , Polineuropatias/genética , Polineuropatias/metabolismo , Isoformas de Proteínas , Espermátides
11.
Neurochem Int ; 130: 104335, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30448564

RESUMO

The cellular prion protein (PrPC) is a medium-sized glycoprotein, attached to the cell surface by a glycosylphosphatidylinositol anchor. PrPC is encoded by a single-copy gene, PRNP, which is abundantly expressed in the central nervous system and at lower levels in non-neuronal cells, including those of the immune system. Evidence from experimental knockout of PRNP in rodents, goats, and cattle and the occurrence of a nonsense mutation in goat that prevents synthesis of PrPC, have shown that the molecule is non-essential for life. Indeed, no easily recognizable phenotypes are associate with a lack of PrPC, except the potentially advantageous trait that animals without PrPC cannot develop prion disease. This is because, in prion diseases, PrPC converts to a pathogenic "scrapie" conformer, PrPSc, which aggregates and eventually induces neurodegeneration. In addition, endogenous neuronal PrPC serves as a toxic receptor to mediate prion-induced neurotoxicity. Thus, PrPC is an interesting target for treatment of prion diseases. Although loss of PrPC has no discernable effect, alteration of its normal physiological function can have very harmful consequences. It is therefore important to understand cellular processes involving PrPC, and research of this topic has advanced considerably in the past decade. Here, we summarize data that indicate the role of PrPC in modulating immune signaling, with emphasis on neuroimmune crosstalk both under basal conditions and during inflammatory stress.


Assuntos
Neuroimunomodulação/fisiologia , Neurônios/imunologia , Proteínas PrPC/imunologia , Doenças Priônicas/imunologia , Animais , Bovinos , Humanos , Neurônios/metabolismo , Proteínas PrPC/metabolismo , Doenças Priônicas/metabolismo , Proteínas Priônicas/imunologia , Proteínas Priônicas/metabolismo , Proteólise
12.
Front Mol Biosci ; 5: 1, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29417049

RESUMO

The cellular prion protein PrPC is highly expressed in neurons, but also present in non-neuronal tissues, including the testicles and spermatozoa. Most immune cells and their bone marrow precursors also express PrPC. Clearly, this protein operates in highly diverse cellular contexts. Investigations into putative stress-protective roles for PrPC have resulted in an array of functions, such as inhibition of apoptosis, stimulation of anti-oxidant enzymes, scavenging roles, and a role in nuclear DNA repair. We have studied stress resilience of spermatozoa and peripheral blood mononuclear cells (PBMCs) derived from non-transgenic goats that lack PrPC (PRNPTer/Ter) compared with cells from normal (PRNP+/+) goats. Spermatozoa were analyzed for freeze tolerance, DNA integrity, viability, motility, ATP levels, and acrosome intactness at rest and after acute stress, induced by Cu2+ ions, as well as levels of reactive oxygen species (ROS) after exposure to FeSO4 and H2O2. Surprisingly, PrPC-negative spermatozoa reacted similarly to normal spermatozoa in all read-outs. Moreover, in vitro exposure of PBMCs to Doxorubicin, H2O2 and methyl methanesulfonate (MMS), revealed no effect of PrPC on cellular survival or global accumulation of DNA damage. Similar results were obtained with human neuroblastoma (SH-SY5Y) cell lines stably expressing varying levels of PrPC. RNA sequencing of PBMCs (n = 8 of PRNP+/+ and PRNPTer/Ter) showed that basal level expression of genes encoding DNA repair enzymes, ROS scavenging, and antioxidant enzymes were unaffected by the absence of PrPC. Data presented here questions the in vitro cytoprotective roles previously attributed to PrPC, although not excluding such functions in other cell types or tissues during inflammatory stress.

13.
Front Immunol ; 8: 1722, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29270176

RESUMO

A naturally occurring mutation in the PRNP gene of Norwegian dairy goats terminates synthesis of the cellular prion protein (PrPC), rendering homozygous goats (PRNPTer/Ter) devoid of the protein. Although PrPC has been extensively studied, particularly in the central nervous system, the biological role of PrPC remains incompletely understood. Here, we examined whether loss of PrPC affects the initial stage of lipopolysaccharide (LPS)-induced acute lung injury (ALI). Acute pulmonary inflammation was induced by intravenous injection of LPS (Escherichia coli O26:B6) in 16 goats (8 PRNPTer/Ter and 8 PRNP+/+). A control group of 10 goats (5 PRNPTer/Ter and 5 PRNP+/+) received sterile saline. Systemic LPS challenge induced sepsis-like clinical signs including tachypnea and respiratory distress. Microscopic examination of lungs revealed multifocal areas with alveolar hemorrhages, edema, neutrophil infiltration, and higher numbers of alveolar macrophages, with no significant differences between PRNP genotypes. A total of 432 (PRNP+/+) and 596 (PRNPTer/Ter) genes were differentially expressed compared with the saline control of the matching genotype. When assigned to gene ontology categories, biological processes involved in remodeling of the extracellular matrix (ECM), were exclusively enriched in PrPC-deficient goats. These genes included a range of collagen-encoding genes, and proteases such as matrix metalloproteinases (MMP1, MMP2, MMP14, ADAM15) and cathepsins. Several proinflammatory upstream regulators (TNF-α, interleukin-1ß, IFN-γ) showed increased activation scores in goats devoid of PrPC. In conclusion, LPS challenge induced marked alterations in the lung tissue transcriptome that corresponded with histopathological and clinical findings in both genotypes. The increased activation of upstream inflammatory regulators and enrichment of ECM components could reflect increased inflammation in the absence of PrPC. Further studies are required to elucidate whether these alterations may affect the later reparative phase of ALI.

14.
PLoS One ; 12(6): e0179881, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28651013

RESUMO

The cellular prion protein (PrPC) has been extensively studied because of its pivotal role in prion diseases; however, its functions remain incompletely understood. A unique line of goats has been identified that carries a nonsense mutation that abolishes synthesis of PrPC. In these animals, the PrP-encoding mRNA is rapidly degraded. Goats without PrPC are valuable in re-addressing loss-of-function phenotypes observed in Prnp knockout mice. As PrPC has been ascribed various roles in immune cells, we analyzed transcriptomic responses to loss of PrPC in peripheral blood mononuclear cells (PBMCs) from normal goat kids (n = 8, PRNP+/+) and goat kids without PrPC (n = 8, PRNPTer/Ter) by mRNA sequencing. PBMCs normally express moderate levels of PrPC. The vast majority of genes were similarly expressed in the two groups. However, a curated list of 86 differentially expressed genes delineated the two genotypes. About 70% of these were classified as interferon-responsive genes. In goats without PrPC, the majority of type I interferon-responsive genes were in a primed, modestly upregulated state, with fold changes ranging from 1.4 to 3.7. Among these were ISG15, DDX58 (RIG-1), MX1, MX2, OAS1, OAS2 and DRAM1, all of which have important roles in pathogen defense, cell proliferation, apoptosis, immunomodulation and DNA damage response. Our data suggest that PrPC contributes to the fine-tuning of resting state PBMCs expression level of type I interferon-responsive genes. The molecular mechanism by which this is achieved will be an important topic for further research into PrPC physiology.


Assuntos
Cabras/genética , Cabras/imunologia , Interferon Tipo I/genética , Proteínas PrPC/deficiência , Animais , Linhagem Celular , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Proteínas de Homeodomínio/genética , Humanos , Leucócitos/imunologia , Masculino , Camundongos , Proteínas PrPC/genética , Proteínas PrPC/imunologia
15.
Sci Rep ; 6: 37844, 2016 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-27886261

RESUMO

Base excision repair (BER) is the major pathway for repair of oxidative DNA damage. Mice with genetic knockout of the BER enzyme Neil3 display compromised neurogenesis in the sub-ventricular zone of the lateral ventricle and sub-granular layer of the dentate gyrus of the hippocampus. To elucidate the impact of oxidative DNA damage-induced neurogenesis on prion disease we applied the experimental prion disease model on Neil3-deficient mice. The incubation period for the disease was similar in both wild type and Neil3-/- mice and the overall neuropathology appeared unaffected by Neil3 function. However, disease in the Neil3-/- mice was of shorter clinical duration. We observed a mildly reduced astrogliosis in the hippocampus and striatum in the Neil3-deficient mice. Brain expression levels of neuronal progenitor markers, nestin (Nestin), sex determining region Box 2 (Sox2), Class III beta-tubulin (Tuj1) decreased towards end-stage prion disease whereas doublecortin (Dcx) levels were less affected. Neuronal nuclei (NeuN), a marker for mature neurons declined during prion disease and more pronounced in the Neil3-/- group. Microglial activation was prominent and appeared unaffected by loss of Neil3. Our data suggest that neurogenesis induced by Neil3 repair of oxidative DNA damage protects against prion disease during the clinical phase.


Assuntos
N-Glicosil Hidrolases/genética , Neurogênese , Doenças Priônicas/genética , Doenças Priônicas/patologia , Animais , Biomarcadores/metabolismo , Dano ao DNA , Giro Denteado/metabolismo , Modelos Animais de Doenças , Proteína Duplacortina , Técnicas de Inativação de Genes , Ventrículos Laterais/metabolismo , Masculino , Camundongos , N-Glicosil Hidrolases/metabolismo , Estresse Oxidativo , Doenças Priônicas/metabolismo
16.
BMC Vet Res ; 12(1): 241, 2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27793136

RESUMO

BACKGROUND: Sepsis is a serious health problem associated with a range of infectious diseases in animals and humans. Early events of this syndrome can be mimicked by experimental administration of lipopolysaccharides (LPS). Compared with mice, small ruminants and humans are highly sensitive to LPS, making goats valuable in inflammatory models. We performed a longitudinal study in eight Norwegian dairy goats that received LPS (0.1 µg/kg, Escherichia coli O26:B6) intravenously. A control group of five goats received corresponding volumes of sterile saline. Clinical examinations were performed continuously, and blood samples were collected throughout the trial. RESULTS: Characteristic signs of acute sepsis, such as sickness behavior, fever, and leukopenia were observed within 1 h of LPS administration. A high-throughput longitudinal gene expression analysis of circulating leukocytes was performed, and genes associated with the acute phase response, type I interferon signaling, LPS cascade and apoptosis, in addition to cytokines and chemokines were targeted. Pro-inflammatory genes, such as IL1B, CCL3 and IL8, were significantly up-regulated. Interestingly, increased mRNA levels of seven interferon stimulated genes (ISGs) were observed peaking at 2 h, corroborating the increasing evidence that ISGs respond immediately to bacterial endotoxins. A slower response was manifested by four extrahepatic acute phase proteins (APP) (SAA3, HP, LF and LCN2) reaching maximum levels at 5 h. CONCLUSIONS: We report an immediate induction of ISGs in leukocytes in response to LPS supporting a link between the interferon system and defense against bacterial infections. The extrahepatic expression of APPs suggests that leukocytes contribute to synthesis of these proteins at the beginning of a systemic inflammation. Taken together, these findings provide insights into the dynamic regulation of innate immune genes, as well as raising new questions regarding the importance of ISGs and extrahepatic APPs in leukocytes after systemic endotoxin challenge.


Assuntos
Endotoxinas/imunologia , Imunidade Inata/genética , Leucócitos/imunologia , Animais , Feminino , Cabras , Interferons/metabolismo
17.
Front Immunol ; 6: 450, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26388873

RESUMO

Despite intensive studies since the 1990s, the physiological role of the cellular prion protein (PrP(C)) remains elusive. Here, we present a novel concept suggesting that PrP(C) contributes to immunological quiescence in addition to cell protection. PrP(C) is highly expressed in diverse organs that by multiple means are particularly protected from inflammation, such as the brain, eye, placenta, pregnant uterus, and testes, while at the same time it is expressed in most cells of the lymphoreticular system. In this paradigm, PrP(C) serves two principal roles: to modulate the inflammatory potential of immune cells and to protect vulnerable parenchymal cells against noxious insults generated through inflammation. Here, we review studies of PrP(C) physiology in view of this concept.

18.
Front Cell Dev Biol ; 3: 44, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26217662

RESUMO

The physiological role of the cellular prion protein (PrP(C)) is incompletely understood. The expression of PrP(C) in hematopoietic stem cells and immune cells suggests a role in the development of these cells, and in PrP(C) knockout animals altered immune cell proliferation and phagocytic function have been observed. Recently, a spontaneous nonsense mutation at codon 32 in the PRNP gene in goats of the Norwegian Dairy breed was discovered, rendering homozygous animals devoid of PrP(C). Here we report hematological and immunological analyses of homozygous goat kids lacking PrP(C) (PRNP(Ter/Ter) ) compared to heterozygous (PRNP (+/Ter)) and normal (PRNP (+/+)) kids. Levels of cell surface PrP(C) and PRNP mRNA in peripheral blood mononuclear cells (PBMCs) correlated well and were very low in PRNP (Ter/Ter), intermediate in PRNP (+/Ter) and high in PRNP (+/+) kids. The PRNP (Ter/Ter) animals had a shift in blood cell composition with an elevated number of red blood cells (RBCs) and a tendency toward a smaller mean RBC volume (P = 0.08) and an increased number of neutrophils (P = 0.068), all values within the reference ranges. Morphological investigations of blood smears and bone marrow imprints did not reveal irregularities. Studies of relative composition of PBMCs, phagocytic ability of monocytes and T-cell proliferation revealed no significant differences between the genotypes. Our data suggest that PrP(C) has a role in bone marrow physiology and warrant further studies of PrP(C) in erythroid and immune cell progenitors as well as differentiated effector cells also under stressful conditions. Altogether, this genetically unmanipulated PrP(C)-free animal model represents a unique opportunity to unveil the enigmatic physiology and function of PrP(C).

19.
Toxicol In Vitro ; 28(5): 975-81, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24780217

RESUMO

This work tests the hypothesis that the marine algal toxin yessotoxin (YTX) can trigger ribotoxic stress response in L6 and BC3H1 myoblast cells. YTX exposure at a concentration of 100 nM displays the characteristics of a ribotoxic stress response in such cells. The exposure leads to activation of the p38 mitogen-activated protein kinase, the stress-activated protein kinase c-jun, and the double-stranded RNA-activated protein kinase (PKR). YTX treatment also causes ribosomal RNA cleavage and inhibits protein synthesis. These observations support the idea that YTX can act as a ribotoxin.


Assuntos
Toxinas Marinhas/toxicidade , Oxocinas/toxicidade , Animais , Linhagem Celular , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Venenos de Moluscos , Biossíntese de Proteínas/efeitos dos fármacos , Clivagem do RNA , RNA Ribossômico 28S/metabolismo , Ratos , eIF-2 Quinase/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
PLoS One ; 9(1): e87268, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24498060

RESUMO

N-myc downstream-regulated gene 1 (NDRG1) is induced by cellular stress such as hypoxia and DNA damage, and in humans, germ line mutations cause Charcot-Marie-Tooth disease. However, the cellular roles of NDRG1 are not fully understood. Previously, NDRG1 was shown to mediate doxorubicin resistance under hypoxia, suggesting a role for NDRG1 in cell survival under these conditions. We found decreased apoptosis in doxorubicin-treated cells expressing NDRG1 shRNAs under normoxia, demonstrating a requirement for NDRG1 in apoptosis in breast epithelial cells under normal oxygen pressure. Also, different cellular stress regimens, such as hypoxia and doxorubicin treatment, induced NDRG1 through different stress signalling pathways. We further compared expression profiles in human breast epithelial cells ectopically over-expressing NDRG1 with cells expressing NDRG1 shRNAs in order to identify biological pathways where NDRG1 is involved. The results suggest that NDRG1 may have roles connected to vesicle transport.


Assuntos
Proteínas de Ciclo Celular/genética , Perfilação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Organelas/genética , Transdução de Sinais/genética , Apoptose/efeitos dos fármacos , Apoptose/genética , Transporte Biológico/genética , Western Blotting , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Doxorrubicina/farmacologia , Células HCT116 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células MCF-7 , Microscopia Confocal , Análise de Sequência com Séries de Oligonucleotídeos , Organelas/metabolismo , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA