Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 6(5): 1392-1408, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38419873

RESUMO

This research article focuses on the targeted color design of silver-gold alloy nanoparticles (NPs), employing a multivariate optimization approach. NP synthesis involves interconnected process parameters, making independent variation challenging. Data-based property-process relationships are established to optimize optical properties effectively. We define a color target, employ a green chemical co-reduction method at room temperature and optimize process parameters accordingly. The CIEL*a*b* color space (Commission Internationale de l'Éclairage - International Commission on Illumination) and Euclidean distances facilitate accurate color matching to establish the property-process relationship. Concurrently, theoretical Mie calculations explore the structure-property relationship across particle sizes, concentrations, and molar gold contents. The theoretically optimal structure agrees very well with experimental particle structures at the property-process relationship's optimum. The data-driven property-process relationship provides valuable insights into the formation mechanism of a complex particle system, sheds light on the role of relevant process parameters and allows to evaluate the practically available property space. Model validation beyond the original grid demonstrates its robustness, yielding colors close to the target. Additionally, Design of Experiments (DoE) methods reduce experimental work by threefold with slight accuracy trade-offs. Our novel methodology for targeted color design demonstrates how data-based methods can be utilized alongside structure-property relationships to unravel property-process relationships in the design of complex nanoparticle systems and paves the way for future developments in targeted property design.

2.
Nanoscale Adv ; 5(5): 1450-1464, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36866254

RESUMO

Metallic alloy nanoparticles (NPs) exhibit interesting optical, electrical and catalytic properties, dependent on their size, shape and composition. In particular, silver-gold alloy NPs are widely applied as model systems to better understand the syntheses and formation (kinetics) of alloy NPs, as the two elements are fully miscible. Our study targets product design via environmentally friendly synthesis conditions. We use dextran as the reducing and stabilizing agent for the synthesis of homogeneous silver-gold alloy NPs at room temperature. Our approach is a one-pot, low temperature, reaction-controlled, green and scalable synthesis route of well-controlled composition and narrow particle size distribution. The composition over a broad range of molar gold contents is confirmed by scanning transmission electron microscopy-energy-dispersive X-ray spectroscopy (STEM-EDX) measurements and auxiliary inductively coupled plasma-optical emission spectroscopy measurements (ICP-OES). The distributions of the resulting particles in size and composition are obtained from multi-wavelength analytical ultracentrifugation using the optical back coupling method and further confirmed by high-pressure liquid chromatography. Finally, we provide insight into the reaction kinetics during the synthesis, discuss the reaction mechanism and demonstrate possibilities for scale-up by a factor of more than 250 by increasing the reactor volume and NP concentration.

3.
Nanoscale ; 14(35): 12928-12939, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36043498

RESUMO

In this study, we introduce a method for the simultaneous retrieval of two-dimensional size-composition distributions of noble metal Ag-Au alloy nanoparticles utilizing an analytical ultracentrifuge equipped with a multiwavelength extinction detector (MWL-AUC). MWL-AUC is used to measure coupled optical and sedimentation properties of the particles. The optical response of the nanoparticles is calculated using Mie's theory, where the particles' complex refractive index is corrected due to the effect of reduced mean free path of electrons. Using a combined analysis of the hydrodynamic and spectral data captured by MWL-AUC, the size and composition of the alloy particles is retrieved. Our method is validated through the analysis of synthetic data and by the very good agreement between experimental scanning transmission electron microscopy and our AUC data. The presented comprehensive characterization approach contributes to improved synthesis, scale-up and production of particulate systems as it provides a simple, fast and direct method to determine noble metal alloy nanoparticle size and composition distributions simultaneously.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA