Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Aging Cell ; 20(7): e13388, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34086398

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder with features of accelerated aging. The majority of HGPS cases are caused by a de novo point mutation in the LMNA gene (c.1824C>T; p.G608G) resulting in progerin, a toxic lamin A protein variant. Children with HGPS typically die from coronary artery diseases or strokes at an average age of 14.6 years. Endothelial dysfunction is a known driver of cardiovascular pathogenesis; however, it is currently unknown how progerin antagonizes normal angiogenic function in HGPS. Here, we use human iPSC-derived endothelial cell (iPSC-EC) models to study angiogenesis in HGPS. We cultured normal and HGPS iPSC-ECs under both static and fluidic culture conditions. HGPS iPSC-ECs show reduced endothelial nitric oxide synthase (eNOS) expression and activity compared with normal controls and concomitant decreases in intracellular nitric oxide (NO) level, which result in deficits in capillary-like microvascular network formation. Furthermore, the expression of matrix metalloproteinase 9 (MMP-9) was reduced in HGPS iPSC-ECs, while the expression of tissue inhibitor metalloproteinases 1 and 2 (TIMP1 and TIMP2) was upregulated relative to healthy controls. Finally, we used an adenine base editor (ABE7.10max-VRQR) to correct the pathogenic c.1824C>T allele in HGPS iPSC-ECs. Remarkably, ABE7.10max-VRQR correction of the HGPS mutation significantly reduced progerin expression to a basal level, rescued nuclear blebbing, increased intracellular NO level, normalized the misregulated TIMPs, and restored angiogenic competence in HGPS iPSC-ECs. Together, these results provide molecular insights of endothelial dysfunction in HGPS and suggest that ABE could be a promising therapeutic approach for correcting HGPS-related cardiovascular phenotypes.


Assuntos
Células Endoteliais/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Progéria/genética , Senescência Celular , Regulação para Baixo , Humanos , Progéria/patologia
2.
Sci Rep ; 11(1): 10871, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34050204

RESUMO

Methylene blue (MB) is a century-old medicine, a laboratory dye, and recently shown as a premier antioxidant that combats ROS-induced cellular aging in human skins. Given MB's molecular structure and light absorption properties, we hypothesize that MB has the potential to be considered as a sunscreen active for UV radiation protection. In this study, we tested the effects of MB on UVB ray-induced DNA double-strand breaks in primary human keratinocytes. We found that MB treatment reduced DNA damages caused by UVB irradiation and subsequent cell death. Next, we compared MB with Oxybenzone, which is the most commonly used chemical active ingredient in sunscreens but recently proven to be hazardous to aquatic ecosystems, in particular to coral reefs. At the same concentrations, MB showed more effective UVB absorption ability than Oxybenzone and significantly outperformed Oxybenzone in the prevention of UVB-induced DNA damage and the clearance of UVA-induced cellular ROS. Furthermore, unlike Oxybenzone, MB-containing seawater did not affect the growth of the coral species Xenia umbellata. Altogether, our study suggests that MB has the potential to be a coral reef-friendly sunscreen active ingredient that can provide broad-spectrum protection against UVA and UVB.


Assuntos
Envelhecimento/efeitos dos fármacos , Antozoários/efeitos dos fármacos , Azul de Metileno/farmacologia , Pele/efeitos dos fármacos , Envelhecimento/patologia , Envelhecimento/efeitos da radiação , Animais , Antioxidantes/farmacologia , Benzofenonas/efeitos adversos , Recifes de Corais , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Ecossistema , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/efeitos da radiação , Luz/efeitos adversos , Azul de Metileno/química , Proteção Radiológica , Pele/efeitos da radiação , Protetores Solares/efeitos adversos , Raios Ultravioleta/efeitos adversos
3.
PLoS One ; 11(12): e0167454, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27907109

RESUMO

Compelling evidence suggests that defective DNA damage response (DDR) plays a key role in the premature aging phenotypes in Hutchinson-Gilford progeria syndrome (HGPS). Studies document widespread alterations in histone modifications in HGPS cells, especially, the global loss of histone H3 trimethylated on lysine 9 (H3K9me3). In this study, we explore the potential connection(s) between H3K9me3 loss and the impaired DDR in HGPS. When cells are exposed to a DNA-damaging agent Doxorubicin (Dox), double strand breaks (DSBs) are generated that result in the phosphorylation of histone H2A variant H2AX (gammaH2AX) within an hour. We find that the intensities of gammaH2AX foci appear significantly weaker in the G0/G1 phase HGPS cells compared to control cells. This reduction is associated with a delay in the recruitment of essential DDR factors. We further demonstrate that ataxia-telangiectasia mutated (ATM) is responsible for the amplification of gammaH2AX signals at DSBs during G0/G1 phase, and its activation is inhibited in the HGPS cells that display significant loss of H3K9me3. Moreover, methylene (MB) blue treatment, which is known to save heterochromatin loss in HGPS, restores H3K9me3, stimulates ATM activity, increases gammaH2AX signals and rescues deficient DDR. In summary, this study demonstrates an early DDR defect of attenuated gammaH2AX signals in G0/G1 phase HGPS cells and provides a plausible connection between H3K9me3 loss and DDR deficiency.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Deleção de Genes , Estudos de Associação Genética , Histonas/genética , Histonas/metabolismo , Progéria/genética , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Dano ao DNA , Reparo do DNA por Junção de Extremidades , Doxorrubicina/farmacologia , Ativação Enzimática , Fibroblastos/metabolismo , Humanos , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA