Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 17028, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34426605

RESUMO

In order to circumvent the limited access and donor variability of human primary alveolar cells, directed differentiation of human pluripotent stem cells (hiPSCs) into alveolar-like cells, provides a promising tool for respiratory disease modeling and drug discovery assays. In this work, a unique, miniaturized 96-Transwell microplate system is described where hiPSC-derived alveolar-like cells were cultured at an air-liquid interface (ALI). To this end, hiPSCs were differentiated into lung epithelial progenitor cells (LPCs) and subsequently matured into a functional alveolar type 2 (AT2)-like epithelium with monolayer-like morphology. AT2-like cells cultured at the physiological ALI conditions displayed characteristics of AT2 cells with classical alveolar surfactant protein expressions and lamellar-body like structures. The integrity of the epithelial barriers between the AT2-like cells was confirmed by applying a custom-made device for 96-parallelized transepithelial electric resistance (TEER) measurements. In order to generate an IPF disease-like phenotype in vitro, the functional AT2-like cells were stimulated with cytokines and growth factors present in the alveolar tissue of IPF patients. The cytokines stimulated the secretion of pro-fibrotic biomarker proteins both on the mRNA (messenger ribonucleic acid) and protein level. Thus, the hiPSC-derived and cellular model system enables the recapitulation of certain IPF hallmarks, while paving the route towards a miniaturized medium throughput approach of pharmaceutical drug discovery.


Assuntos
Ar , Técnicas de Cultura de Células , Células-Tronco Pluripotentes Induzidas/citologia , Miniaturização , Modelos Biológicos , Alvéolos Pulmonares/citologia , Biomarcadores/metabolismo , Diferenciação Celular , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/ultraestrutura , Fenótipo , Alvéolos Pulmonares/ultraestrutura , Fibrose Pulmonar/patologia , Transcrição Gênica
2.
Methods Mol Biol ; 1994: 101-115, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31124108

RESUMO

In drug discovery, there is an increasing demand for more physiological in vitro models that recapitulate the disease situation in patients. Human induced pluripotent stem (hiPS) cell-derived model cells could serve this purpose. To date, several directed differentiation approaches have been described to generate definitive endoderm (DE) from hiPS cells, but protocols suitable for drug development and high-throughput screening (HTS) have not been reported yet. In this work, a large-scale expansion of hiPS cells for high-throughput adaption is presented and an optimized stepwise differentiation of hiPS cells into DE cells is described. The produced DE cells were demonstrated to express classical DE markers on the gene expression and protein level. The here described DE cells are multipotent progenitors and act as starting points for a broad spectrum of endodermal model cells in HTS and other areas of drug discovery.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular , Endoderma/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Descoberta de Drogas , Endoderma/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo
3.
Methods Mol Biol ; 1994: 243-263, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31124122

RESUMO

Human induced pluripotent stem (hiPS) cell-derived neurons promise to provide better model cells for drug discovery in the context of neurodegenerative and neuropsychiatric diseases. The neuronal differentiation protocol described encompasses a cellular amplification phase for hiPS-derived neural progenitor (NP) cells. Thus, the combination of growth factor-driven expansion and inhibition of notch (GRINCH) enabled the scalable production of neurons in sufficient numbers to meet the immense material needs of a high-throughput screening (HTS) campaign. These GRINCH cells matured in 384-well microplates display neuronal markers and electrophysiological activity. The differentiation protocol was applicable to various human hiPS cell clones. In a finding and profiling campaign for modulators of the tropomyosin receptor kinase B (TrkB), the GRINCH neurons were shown to be suitable for measuring the phosphorylation and downstream signaling of the endogenously expressed TrkB. The employed techniques in the amplified luminescent proximity homogeneous assay (Alpha) and the high-throughput reverse transcription polymerase chain reaction (RT-PCR) format are transferable to other pharmaceutical drug targets. Together with the GRINCH neurons, these detection technologies open new experimental routes with tremendous potential for early drug discovery.


Assuntos
Diferenciação Celular , Ensaios de Triagem em Larga Escala , Células-Tronco Neurais/citologia , Neurônios/fisiologia , Linhagem Celular , Proliferação de Células , Dipeptídeos/farmacologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Glicoproteínas de Membrana/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Fosforilação , Receptor trkB/metabolismo
4.
J Pharmacol Exp Ther ; 361(3): 355-365, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28351853

RESUMO

Brain-derived neurotrophic factor (BDNF) is a central modulator of neuronal development and synaptic plasticity in the central nervous system. This renders the BDNF-modulated tropomyosin receptor kinase B (TrkB) a promising drug target to treat synaptic dysfunctions. Using GRowth factor-driven expansion and INhibition of NotCH (GRINCH) during maturation, the so-called GRINCH neurons were derived from human-induced pluripotent stem cells. These GRINCH neurons were used as model cells for pharmacologic profiling of two TrkB-agonistic antibodies, hereafter referred to as AB2 and AB20 In next-generation sequencing studies, AB2 and AB20 stimulated transcriptional changes, which extensively overlapped with BDNF-driven transcriptional modulation. In regard to TrkB phosphorylation, both AB2 and AB20 were only about half as efficacious as BDNF; however, with respect to the TrkB downstream signaling, AB2 and AB20 displayed increased efficacy values, providing a stimulation at least comparable to BDNF in respect to VGF transcription, as well as of AKT and cAMP response element-binding protein phosphorylation. In a complex structure of the TrkB-d5 domain with AB20, determined by X-ray crystallography, the AB20 binding site was found to be allosteric in regard to the BDNF binding site, whereas AB2 was known to act orthosterically with BDNF. In agreement with this finding, AB2 and AB20 acted synergistically at greater concentrations to drive TrkB phosphorylation. Although TrkB downstream signaling declined faster after pulse stimulation with AB20 than with AB2, AB20 restimulated TrkB phosphorylation more efficiently than AB2. In conclusion, both antibodies displayed some limitations and some benefits in regard to future applications as therapeutic agents.


Assuntos
Anticorpos Monoclonais/farmacologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Receptor trkB/agonistas , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Fator Neurotrófico Derivado do Encéfalo/química , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Células CHO , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Humanos , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Imunoglobulina G/farmacologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptor trkB/química , Receptor trkB/metabolismo
5.
SLAS Discov ; 22(3): 274-286, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28231034

RESUMO

The advent of human-induced pluripotent stem (hiPS) cell-derived neurons promised to provide better model cells for drug discovery in the context of the central nervous system. This work demonstrates both the upscaling of cellular expansion and the acceleration of neuronal differentiation to accommodate the immense material needs of a high-throughput screening (HTS) approach. Using GRowth factor-driven expansion and INhibition of NotCH (GRINCH) during maturation, the derived cells are here referred to as GRINCH neurons. GRINCH cells displayed neuronal markers, and their functional activity could be demonstrated by electrophysiological recordings. In an application of GRINCH neurons, the brain-derived neurotrophic factor (BDNF)-mediated activation of tropomyosin receptor kinase (TrkB) was investigated as a promising drug target to treat synaptic dysfunctions. To assess the phosphorylation of endogenous TrkB in the GRINCH cells, the highly sensitive amplified luminescent proximity homogeneous assay LISA (AlphaLISA) format was established as a primary screen. A high-throughput reverse transcription (RT)-PCR format was employed as a secondary assay to analyze TrkB-mediated downstream target gene expression. In summary, an optimized differentiation protocol, highly efficient cell upscaling, and advanced assay miniaturization, combined with increased detection sensitivity, pave the way for a new generation of predictive cell-based drug discovery.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala , Glicoproteínas de Membrana/genética , Neurônios/efeitos dos fármacos , Receptor trkB/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Biomarcadores/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Diferenciação Celular , Proliferação de Células/efeitos dos fármacos , Diaminas/farmacologia , Descoberta de Drogas/instrumentação , Fator 2 de Crescimento de Fibroblastos/farmacologia , Regulação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Medições Luminescentes , Glicoproteínas de Membrana/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Técnicas de Patch-Clamp , Fosforilação/efeitos dos fármacos , Ratos , Receptor trkB/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa/instrumentação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Tiazóis/farmacologia
6.
Antimicrob Agents Chemother ; 59(1): 96-104, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25313206

RESUMO

Malaria patients are frequently coinfected with HIV and mycobacteria causing tuberculosis, which increases the use of coadministered drugs and thereby enhances the risk of pharmacokinetic drug-drug interactions. Activation of the pregnane X receptor (PXR) by xenobiotics, which include many drugs, induces drug metabolism and transport, thereby resulting in possible attenuation or loss of the therapeutic responses to the drugs being coadministered. While several artemisinin-type antimalarial drugs have been shown to activate PXR, data on nonartemisinin-type antimalarials are still missing. Therefore, this study aimed to elucidate the potential of nonartemisinin antimalarial drugs and drug metabolites to activate PXR. We screened 16 clinically used antimalarial drugs and six major drug metabolites for binding to PXR using the two-hybrid PXR ligand binding domain assembly assay; this identified carboxymefloquine, the major and pharmacologically inactive metabolite of the antimalarial drug mefloquine, as a potential PXR ligand. Two-hybrid PXR-coactivator and -corepressor interaction assays and PXR-dependent promoter reporter gene assays confirmed carboxymefloquine to be a novel PXR agonist which specifically activated the human receptor. In the PXR-expressing intestinal LS174T cells and in primary human hepatocytes, carboxymefloquine induced the expression of drug-metabolizing enzymes and transporters on the mRNA and protein levels. The crucial role of PXR for the carboxymefloquine-dependent induction of gene expression was confirmed by small interfering RNA (siRNA)-mediated knockdown of the receptor. Thus, the clinical use of mefloquine may result in pharmacokinetic drug-drug interactions by means of its metabolite carboxymefloquine. Whether these in vitro findings are of in vivo relevance has to be addressed in future clinical drug-drug interaction studies.


Assuntos
Indutores do Citocromo P-450 CYP2B6/farmacologia , Mefloquina/análogos & derivados , Mefloquina/metabolismo , Receptores de Esteroides/agonistas , Animais , Antimaláricos/metabolismo , Transporte Biológico/efeitos dos fármacos , Células COS , Linhagem Celular , Chlorocebus aethiops , Citocromo P-450 CYP2B6/metabolismo , Interações Medicamentosas , Resistência a Medicamentos , Células Hep G2 , Hepatócitos , Humanos , Malária/tratamento farmacológico , Mefloquina/farmacologia , Mefloquina/uso terapêutico , Receptor de Pregnano X , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo
7.
Trends Pharmacol Sci ; 35(10): 510-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25096281

RESUMO

Owing to the inherent disconnect between drug pharmacology in heterologous cellular models and drug efficacy in vivo, the quest for more predictive in vitro systems is one of the most urgent challenges of modern drug discovery. An improved pharmacological in vitro profiling would employ primary samples of the proper drug-targeted human tissue or the bona fide human disease-relevant cells. With the advent of induced pluripotent stem (iPS) cell technology the facilitated access to a variety of disease-relevant target cells is now held out in prospect. In this review, we focus on the use of human iPS cell derived neurons for high throughput pharmaceutical drug screening, employing detection technologies that are sufficiently sensitive to measure signaling in cells with physiological target protein expression levels.


Assuntos
Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA