Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 6(10)2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33857018

RESUMO

BACKGROUNDHigh circulating levels of ceramides (Cer) and sphingomyelins (SM) are associated with cardiometabolic diseases. The consumption of whole fat dairy products, naturally containing such polar lipids (PL), is associated with health benefits, but the impact on sphingolipidome remains unknown.METHODSIn a 4-week randomized controlled trial, 58 postmenopausal women daily consumed milk PL-enriched cream cheese (0, 3, or 5 g of milk PL). Postprandial metabolic explorations were performed before and after supplementation. Analyses included SM and Cer species in serum, chylomicrons, and feces. The ileal contents of 4 ileostomy patients were also explored after acute milk PL intake.RESULTSMilk PL decreased serum atherogenic C24:1 Cer, C16:1 SM, and C18:1 SM species (Pgroup < 0.05). Changes in serum C16+18 SM species were positively correlated with the reduction of cholesterol (r = 0.706), LDL-C (r = 0.666), and ApoB (r = 0.705) (P < 0.001). Milk PL decreased chylomicron content in total SM and C24:1 Cer (Pgroup < 0.001), parallel to a marked increase in total Cer in feces (Pgroup < 0.001). Milk PL modulated some specific SM and Cer species in both ileal efflux and feces, suggesting differential absorption and metabolization processes in the gut.CONCLUSIONMilk PL supplementation decreased atherogenic SM and Cer species associated with the improvement of cardiovascular risk markers. Our findings bring insights on sphingolipid metabolism in the gut, especially Cer, as signaling molecules potentially participating in the beneficial effects of milk PL.TRIAL REGISTRATIONClinicalTrials.gov, NCT02099032, NCT02146339.FUNDINGANR-11-ALID-007-01; PHRCI-2014: VALOBAB, no. 14-007; CNIEL; GLN 2018-11-07; HCL (sponsor).


Assuntos
Ceramidas , Metabolismo dos Lipídeos/fisiologia , Leite , Pós-Menopausa/metabolismo , Esfingomielinas , Animais , Ceramidas/análise , Ceramidas/sangue , Ceramidas/metabolismo , Queijo , Dieta , Fezes/química , Feminino , Glicolipídeos/metabolismo , Glicoproteínas/metabolismo , Humanos , Gotículas Lipídicas/metabolismo , Sobrepeso , Esfingomielinas/análise , Esfingomielinas/sangue , Esfingomielinas/metabolismo
2.
Food Chem ; 240: 67-74, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28946327

RESUMO

Bioactive lipids of the milk fat globule membrane become concentrated in two co-products of the butter industry, buttermilk and butterserum. Their lipid composition is detailed here with special emphasis on sphingolipid composition of nutritional interest, determined using GC, HPLC and tandem mass spectrometry. Butterserum was 2.5 times more concentrated in total fat than buttermilk, with 7.7±1.5vs 19.5±2.9wt% and even more concentrated in polar lipids, with 1.4±0.2vs 8.5±1.1wt%. Both ingredients constitute concentrated sources of sphingomyelin (3.4-21mg/g dry matter) and contained low amounts of bioactive ceramides in a ratio to sphingomyelin of 1:5mol% in buttermilk and 1:10mol% in butterserum. Compared to other natural lecithins, these two co-products are rich in long and saturated fatty acids (C22:0-C24:0), contain cholesterol and could have interesting applications in neonatal nutrition, but also as brain-protective, hepatoprotective and cholesterol lowering ingredients.


Assuntos
Leitelho/análise , Ceramidas/análise , Leite/química , Esfingolipídeos/análise , Animais , Ácidos Graxos , Síndrome de Heterotaxia , Humanos
3.
J Nutr ; 145(8): 1770-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26136586

RESUMO

BACKGROUND: Polar lipid (PL) emulsifiers such as milk PLs (MPLs) may affect digestion and subsequent lipid metabolism, but focused studies on postprandial lipemia are lacking. OBJECTIVE: We evaluated the impact of MPLs on postprandial lipemia in mice and on lipid digestion in vitro. METHODS: Female Swiss mice were gavaged with 150 µL of an oil-in-water emulsion stabilized with 5.7 mg of either MPLs or soybean PLs (SPLs) and killed after 1, 2, or 4 h. Plasma lipids were quantified and in the small intestine, gene expression was analyzed by reverse transcriptase-quantitative polymerase chain reaction. Emulsions were lipolyzed in vitro using a static human digestion model; triglyceride (TG) disappearance was followed by thin-layer chromatography. RESULTS: In mice, after 1 h, plasma TGs tended to be higher in the MPL group than in the SPL group (141 µg/mL vs. 90 µg/mL; P = 0.07) and nonesterified fatty acids (NEFAs) were significantly higher (64 µg/mL vs. 44 µg/mL; P < 0.05). The opposite was observed after 4 h with lower TGs (21 µg/mL vs. 35 µg/mL; P < 0.01) and NEFAs (20 µg/mL vs. 32 µg/mL; P < 0.01) in the MPL group compared with the SPL group. This was associated at 4 h with a lower gene expression of apolipoprotein B (Apob) and Secretion Associated, Ras related GTPase 1 gene homolog B (Sar1b), in the duodenum of MPL mice compared with SPL mice (P < 0.05). In vitro, during the intestinal phase, TGs were hydrolyzed more in the MPL emulsion than in the SPL emulsion (decremental AUCs were 1750%/min vs. 180%/min; P < 0.01). MPLs enhance lipid intestinal hydrolysis and promote more rapid intestinal lipid absorption and sharper kinetics of lipemia. CONCLUSIONS: Postprandial lipemia in mice can be modulated by emulsifying with MPLs compared with SPLs, partly through differences in chylomicron assembly, and TG hydrolysis rate as observed in vitro. MPLs may thereby contribute to the long-term regulation of lipid metabolism.


Assuntos
Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/farmacologia , Lipólise/efeitos dos fármacos , Leite/química , Animais , Emulsificantes , Feminino , Regulação da Expressão Gênica , Intestino Delgado/metabolismo , Lecitinas , Lipídeos/química , Camundongos , Período Pós-Prandial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA