Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Beilstein J Nanotechnol ; 15: 704-712, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919166

RESUMO

Due to the recent interest in ultrawide bandgap ß-Ga2O3 thin films and nanostructures for various electronics and UV device applications, it is important to understand the mechanical properties of Ga2O3 nanowires (NWs). In this work, we investigated the elastic modulus of individual ß-Ga2O3 NWs using two distinct techniques - in-situ scanning electron microscopy resonance and three-point bending in atomic force microscopy. The structural and morphological properties of the synthesised NWs were investigated using X-ray diffraction, transmission and scanning electron microscopies. The resonance tests yielded the mean elastic modulus of 34.5 GPa, while 75.8 GPa mean value was obtained via three-point bending. The measured elastic moduli values indicate the need for finely controllable ß-Ga2O3 NW synthesis methods and detailed post-examination of their mechanical properties before considering their application in future nanoscale devices.

2.
Beilstein J Nanotechnol ; 15: 435-446, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711582

RESUMO

Metallic nanowires (NWs) are sensitive to heat treatment and can split into shorter fragments within minutes at temperatures far below the melting point. This process can hinder the functioning of NW-based devices that are subject to relatively mild temperatures. Commonly, heat-induced fragmentation of NWs is attributed to the interplay between heat-enhanced diffusion and Rayleigh instability. In this work, we demonstrated that contact with the substrate plays an important role in the fragmentation process and can strongly affect the outcome of the heat treatment. We deposited silver NWs onto specially patterned silicon wafers so that some NWs were partially suspended over the holes in the substrate. Then, we performed a series of heat-treatment experiments and found that adhered and suspended parts of NWs behave differently under the heat treatment. Moreover, depending on the heat-treatment process, fragmentation in either adhered or suspended parts can dominate. Experiments were supported by finite element method and molecular dynamics simulations.

3.
Small ; 20(1): e2304614, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37670206

RESUMO

Nanowires (NWs) are among the most studied nanostructures as they have numerous promising applications thanks to their various unique properties. Furthermore, the properties of NWs can be tailored during synthesis by introducing structural defects such as nano-twins, periodic polytypes, and kinks, i.e., abrupt changes in their axial direction. Here, this work reports for the first time the postsynthesis formation of such defects, achieved by exploiting a peculiar plasticity that may occur in nanosized covalent materials. Specifically, in this work the authors found that single-crystal CuO NWs can form double kinks when subjected to external mechanical loading. Both the microscopy and atomistic modeling suggest that deformation-induced twinning along the ( 1 ¯ 10 ) $( {\bar{1}10} )$ plane is the mechanism behind this effect. In a single case the authors are able to unkink a NW back to its initial straight profile, indicating the possibility of reversible plasticity in CuO NWs, which is supported by the atomistic simulations. The phenomenon reported here provides novel insights into the mechanisms of plastic deformation in covalent NWs and offers potential avenues for developing techniques to customize the shape of NWs postsynthesis and introduce new functionalities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA