Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biol Direct ; 18(1): 43, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528429

RESUMO

Antipsychotic drugs are the mainstay of treatment for schizophrenia and provide adjunct therapies for other prevalent psychiatric conditions, including bipolar disorder and major depressive disorder. However, they also induce debilitating extrapyramidal syndromes (EPS), such as Parkinsonism, in a significant minority of patients. The majority of antipsychotic drugs function as dopamine receptor antagonists in the brain while the most recent 'third'-generation, such as aripiprazole, act as partial agonists. Despite showing good clinical efficacy, these newer agents are still associated with EPS in ~ 5 to 15% of patients. However, it is not fully understood how these movement disorders develop. Here, we combine clinically-relevant drug concentrations with mutliscale model systems to show that aripiprazole and its primary active metabolite induce mitochondrial toxicity inducing robust declines in cellular ATP and viability. Aripiprazole, brexpiprazole and cariprazine were shown to directly inhibit respiratory complex I through its ubiquinone-binding channel. Importantly, all three drugs induced mitochondrial toxicity in primary embryonic mouse neurons, with greater bioenergetic inhibition in ventral midbrain neurons than forebrain neurons. Finally, chronic feeding with aripiprazole resulted in structural damage to mitochondria in the brain and thoracic muscle of adult Drosophila melanogaster consistent with locomotor dysfunction. Taken together, we show that antipsychotic drugs acting as partial dopamine receptor agonists exhibit off-target mitochondrial liabilities targeting complex I.


Assuntos
Antipsicóticos , Transtorno Depressivo Maior , Animais , Camundongos , Aripiprazol/farmacologia , Aripiprazol/uso terapêutico , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Transtorno Depressivo Maior/tratamento farmacológico , Drosophila melanogaster , Transporte de Elétrons
2.
Dis Model Mech ; 16(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36695500

RESUMO

Parkinson's disease (PD), an age-dependent neurodegenerative disease, is characterised by the selective loss of dopaminergic neurons in the substantia nigra (SN). Mitochondrial dysfunction is a hallmark of PD, and mutations in PINK1, a gene necessary for mitochondrial fitness, cause PD. Drosophila melanogaster flies with pink1 mutations exhibit mitochondrial defects and dopaminergic cell loss and are used as a PD model. To gain an integrated view of the cellular changes caused by defects in the PINK1 pathway of mitochondrial quality control, we combined metabolomics and transcriptomics analysis in pink1-mutant flies with human induced pluripotent stem cell (iPSC)-derived neural precursor cells (NPCs) with a PINK1 mutation. We observed alterations in cysteine metabolism in both the fly and human PD models. Mitochondrial dysfunction in the NPCs resulted in changes in several metabolites that are linked to cysteine synthesis and increased glutathione levels. We conclude that alterations in cysteine metabolism may compensate for increased oxidative stress in PD, revealing a unifying mechanism of early-stage PD pathology that may be targeted for drug development. This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas de Drosophila , Células-Tronco Pluripotentes Induzidas , Células-Tronco Neurais , Doenças Neurodegenerativas , Doença de Parkinson , Animais , Humanos , Drosophila melanogaster/metabolismo , Cisteína , Doença de Parkinson/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Serina-Treonina Quinases/genética
3.
Front Neurosci ; 16: 832961, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464310

RESUMO

Hypothalamic tanycytes are neural stem and progenitor cells, but little is known of how they are regulated. Here we provide evidence that the cell adhesion molecule, NrCAM, regulates tanycytes in the adult niche. NrCAM is strongly expressed in adult mouse tanycytes. Immunohistochemical and in situ hybridization analysis revealed that NrCAM loss of function leads to both a reduced number of tanycytes and reduced expression of tanycyte-specific cell markers, along with a small reduction in tyrosine hydroxylase-positive arcuate neurons. Similar analyses of NrCAM mutants at E16 identify few changes in gene expression or cell composition, indicating that NrCAM regulates tanycytes, rather than early embryonic hypothalamic development. Neurosphere and organotypic assays support the idea that NrCAM governs cellular homeostasis. Single-cell RNA sequencing (scRNA-Seq) shows that tanycyte-specific genes, including a number that are implicated in thyroid hormone metabolism, show reduced expression in the mutant mouse. However, the mild tanycyte depletion and loss of markers observed in NrCAM-deficient mice were associated with only a subtle metabolic phenotype.

4.
Stem Cell Reports ; 16(11): 2718-2735, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34678205

RESUMO

In Parkinson's disease (PD), substantia nigra (SN) dopaminergic (DA) neurons degenerate, while related ventral tegmental area (VTA) DA neurons remain relatively unaffected. Here, we present a methodology that directs the differentiation of mouse and human pluripotent stem cells toward either SN- or VTA-like DA lineage and models their distinct vulnerabilities. We show that the level of WNT activity is critical for the induction of the SN- and VTA-lineage transcription factors Sox6 and Otx2, respectively. Both WNT signaling modulation and forced expression of these transcription factors can drive DA neurons toward the SN- or VTA-like fate. Importantly, the SN-like lineage enriched DA cultures recapitulate the selective sensitivity to mitochondrial toxins as observed in PD, while VTA-like neuron-enriched cultures are more resistant. Furthermore, a proteomics approach led to the identification of compounds that alter SN neuronal survival, demonstrating the utility of our strategy for disease modeling and drug discovery.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Degeneração Neural/genética , Doença de Parkinson/genética , Células-Tronco Pluripotentes/metabolismo , Substância Negra/metabolismo , Área Tegmentar Ventral/metabolismo , Animais , Diferenciação Celular/genética , Linhagem Celular , Neurônios Dopaminérgicos/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Modelos Neurológicos , Células-Tronco Embrionárias Murinas/metabolismo , Fatores de Transcrição Otx/genética , Fatores de Transcrição Otx/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Células-Tronco Pluripotentes/citologia , Fatores de Transcrição SOXD/genética , Fatores de Transcrição SOXD/metabolismo , Substância Negra/citologia , Área Tegmentar Ventral/citologia
5.
Geriatrics (Basel) ; 6(1)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530357

RESUMO

In December 2019, a coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), began infecting humans, causing a novel disease, coronavirus disease 19 (COVID-19). This was first described in the Wuhan province of the People's Republic of China. SARS-CoV-2 has spread throughout the world, causing a global pandemic. To date, thousands of cases of COVID-19 have been reported in the United Kingdom, and over 45,000 patients have died. Some progress has been achieved in managing this disease, but the biological determinants of health, in addition to age, that affect SARS-CoV-2 infectivity and mortality are under scrutiny. Recent studies show that several medical conditions, including diabetes and hypertension, increase the risk of COVID-19 and death. The increased vulnerability of elderly individuals and those with comorbidities, together with the prevalence of neurodegenerative diseases with advanced age, led us to investigate the links between neurodegeneration and COVID-19. We analysed the primary health records of 13,338 UK individuals tested for COVID-19 between March and July 2020. We show that a pre-existing diagnosis of Alzheimer's disease predicts the highest risk of COVID-19 and mortality among elderly individuals. In contrast, Parkinson's disease patients were found to have a higher risk of SARS-CoV-2 infection but not mortality from COVID-19. We conclude that there are disease-specific differences in COVID-19 susceptibility among patients affected by neurodegenerative disorders.

6.
Environ Pollut ; 268(Pt A): 115859, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33120349

RESUMO

In December 2019, a novel disease, coronavirus disease 19 (COVID-19), emerged in Wuhan, People's Republic of China. COVID-19 is caused by a novel coronavirus (SARS-CoV-2) presumed to have jumped species from another mammal to humans. This virus has caused a rapidly spreading global pandemic. To date, over 300,000 cases of COVID-19 have been reported in England and over 40,000 patients have died. While progress has been achieved in managing this disease, the factors in addition to age that affect the severity and mortality of COVID-19 have not been clearly identified. Recent studies of COVID-19 in several countries identified links between air pollution and death rates. Here, we explored potential links between major fossil fuel-related air pollutants and SARS-CoV-2 mortality in England. We compared current SARS-CoV-2 cases and deaths from public databases to both regional and subregional air pollution data monitored at multiple sites across England. After controlling for population density, age and median income, we show positive relationships between air pollutant concentrations, particularly nitrogen oxides, and COVID-19 mortality and infectivity. Using detailed UK Biobank data, we further show that PM2.5 was a major contributor to COVID-19 cases in England, as an increase of 1 m3 in the long-term average of PM2.5 was associated with a 12% increase in COVID-19 cases. The relationship between air pollution and COVID-19 withstands variations in the temporal scale of assessments (single-year vs 5-year average) and remains significant after adjusting for socioeconomic, demographic and health-related variables. We conclude that a small increase in air pollution leads to a large increase in the COVID-19 infectivity and mortality rate in England. This study provides a framework to guide both health and emissions policies in countries affected by this pandemic.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Poluentes Atmosféricos/análise , Poluição do Ar/análise , China , Inglaterra , Humanos , Material Particulado/análise , SARS-CoV-2
7.
Nat Commun ; 11(1): 3111, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561725

RESUMO

Midbrain dopaminergic (DA) axons make long longitudinal projections towards the striatum. Despite the importance of DA striatal innervation, processes involved in establishment of DA axonal connectivity remain largely unknown. Here we demonstrate a striatal-specific requirement of transcriptional regulator Nolz1 in establishing DA circuitry formation. DA projections are misguided and fail to innervate the striatum in both constitutive and striatal-specific Nolz1 mutant embryos. The lack of striatal Nolz1 expression results in nigral to pallidal lineage conversion of striatal projection neuron subtypes. This lineage switch alters the composition of secreted factors influencing DA axonal tract formation and renders the striatum non-permissive for dopaminergic and other forebrain tracts. Furthermore, transcriptomic analysis of wild-type and Nolz1-/- mutant striatal tissue led to the identification of several secreted factors that underlie the observed guidance defects and proteins that promote DA axonal outgrowth. Together, our data demonstrate the involvement of the striatum in orchestrating dopaminergic circuitry formation.


Assuntos
Orientação de Axônios/fisiologia , Axônios/fisiologia , Corpo Estriado/crescimento & desenvolvimento , Neurônios Dopaminérgicos/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Carbocianinas/administração & dosagem , Corpo Estriado/diagnóstico por imagem , Embrião de Mamíferos , Feminino , Corantes Fluorescentes/administração & dosagem , Peptídeos e Proteínas de Sinalização Intracelular/genética , Microscopia Intravital , Camundongos Knockout , Técnicas Analíticas Microfluídicas , Microinjeções , Microscopia Confocal , Rede Nervosa/fisiologia , Proteínas do Tecido Nervoso/genética , Técnicas de Cultura de Tecidos
8.
Proc Nutr Soc ; 78(3): 272-278, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30457065

RESUMO

Animal models are valuable for the study of complex behaviours and physiology such as the control of appetite because genetic, pharmacological and surgical approaches allow the investigation of underlying mechanisms. However, the majority of such studies are carried out in just two species, laboratory mice and rats. These conventional laboratory species have been intensely selected for high growth rate and fecundity, and have a high metabolic rate and short lifespan. These aspects limit their translational relevance for human appetite control. This review will consider the value of studies carried out in a seasonal species, the Siberian hamster, which shows natural photoperiod-regulated annual cycles in appetite, growth and fattening. Such studies reveal that this long-term control is not simply an adjustment of the known hypothalamic neuronal systems that control hunger and satiety in the short term. Long-term cyclicity is probably driven by hypothalamic tanycytes, glial cells that line the ventricular walls of the hypothalamus. These unique cells sense nutrients and metabolic hormones, integrate seasonal signals and effect plasticity of surrounding neural circuits through their function as a stem cell niche in the adult. Studies of glial cell function in the hypothalamus offer new potential for identifying central targets for appetite and body weight control amenable to dietary or pharmacological manipulation.


Assuntos
Apetite/fisiologia , Metabolismo Energético/fisiologia , Células Ependimogliais , Hipotálamo , Animais , Peso Corporal/fisiologia , Ingestão de Energia/fisiologia , Células Ependimogliais/metabolismo , Células Ependimogliais/fisiologia , Feminino , Hormônios/metabolismo , Hipotálamo/citologia , Hipotálamo/fisiologia , Masculino , Camundongos , Phodopus , Fotoperíodo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA