Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 294
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38934970

RESUMO

BACKGROUND: Ventricular tachycardia (VT), which can lead to sudden cardiac death, occurs frequently in patients after myocardial infarction. Radiofrequency catheter ablation (RFA) is a modestly effective treatment of VT, but it has limitations and risks. Cardiac magnetic resonance (CMR)-based heart digital twins have emerged as a useful tool for identifying VT circuits for RFA treatment planning. However, the CMR resolution used to reconstruct these digital twins may impact VT circuit predictions, leading to incorrect RFA treatment planning. OBJECTIVES: This study sought to predict RFA targets in the arrhythmogenic substrate using heart digital twins reconstructed from both clinical and high-resolution 2-dimensional CMR datasets and compare the predictions. METHODS: High-resolution (1.35 × 1.35 × 3 mm), or oversampled resolution (Ov-Res), short-axis late gadolinium-enhanced CMR was acquired by combining 2 subsequent clinical resolution (Clin-Res) (1.35 × 1.35 × 6 mm) short-axis late gadolinium-enhanced CMR scans from 6 post-myocardial infarction patients undergoing VT ablation and used to reconstruct a total of 3 digital twins (1 Ov-Res, 2 Clin-Res) for each patient. Rapid pacing was used to assess VT circuits and identify the optimal ablation targets in each digital twin. VT circuits predicted by the digital twins were compared with intraprocedural electroanatomic mapping data and used to identify emergent VT. RESULTS: The Ov-Res digital twins reduced partial volume effects and better predicted unique VT circuits compared with the Clin-Res digital twins (66.6% vs 54.5%; P < 0.01). Only the Ov-Res digital twin successfully identified emergent VT after a failed initial ablation. CONCLUSIONS: Digital twin infarct geometry and VT circuit predictions depend on the magnetic resonance resolution. Ov-Res digital twins better predict VT circuits and emergent VT, which may improve RFA outcomes.

2.
JACC Clin Electrophysiol ; 10(6): 1135-1146, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703163

RESUMO

BACKGROUND: Ventricular tachycardia (VT) recurrence rates remain high following ablation among patients with nonischemic cardiomyopathy (NICM). OBJECTIVES: This study sought to define the prevalence of lipomatous metaplasia (LM) in patients with NICM and VT and its association with postablation VT recurrence. METHODS: From patients who had ablation of left ventricular VT, we retrospectively identified 113 consecutive NICM patients with preprocedural contrast-enhanced cardiac computed tomography (CECT), from which LM was segmented. Nested within this cohort were 62 patients that prospectively underwent CECT and cardiac magnetic resonance from which myocardial border zone and dense late gadolinium enhancement (LGE) were segmented. A control arm of 30 NICM patients without VT with CECT was identified. RESULTS: LM was identified among 57% of control patients without VT vs 83% of patients without VT recurrence and 100% of patients with VT recurrence following ablation. In multivariable analyses, LM extent was the only independent predictor of VT recurrence, with an adjusted HR per 1-g LM increase of 1.1 (P < 0.001). Patients with LM extent ≥2.5 g had 4.9-fold higher hazard of VT recurrence than those with LM <2.5 g (P < 0.001). In the nested cohort with 32 VT recurrences, LM extent was independently associated with VT recurrence after adjustment for border zone and LGE extent (HR per 1 g increase: 1.1; P = 0.036). CONCLUSIONS: Myocardial LM is prevalent in patients with NICM of a variety of etiologies, and its extent is associated with postablation VT recurrence independent of the degree of fibrosis.


Assuntos
Cardiomiopatias , Ablação por Cateter , Metaplasia , Recidiva , Taquicardia Ventricular , Humanos , Masculino , Taquicardia Ventricular/cirurgia , Taquicardia Ventricular/etiologia , Taquicardia Ventricular/fisiopatologia , Feminino , Cardiomiopatias/fisiopatologia , Cardiomiopatias/diagnóstico por imagem , Pessoa de Meia-Idade , Idoso , Estudos Retrospectivos , Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X , Lipomatose/cirurgia , Lipomatose/patologia , Lipomatose/diagnóstico por imagem , Lipomatose/complicações
3.
Sci Rep ; 14(1): 9515, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664464

RESUMO

Stroke, a major global health concern often rooted in cardiac dynamics, demands precise risk evaluation for targeted intervention. Current risk models, like the CHA 2 DS 2 -VASc score, often lack the granularity required for personalized predictions. In this study, we present a nuanced and thorough stroke risk assessment by integrating functional insights from cardiac magnetic resonance (CMR) with patient-specific computational fluid dynamics (CFD) simulations. Our cohort, evenly split between control and stroke groups, comprises eight patients. Utilizing CINE CMR, we compute kinematic features, revealing smaller left atrial volumes for stroke patients. The incorporation of patient-specific atrial displacement into our hemodynamic simulations unveils the influence of atrial compliance on the flow fields, emphasizing the importance of LA motion in CFD simulations and challenging the conventional rigid wall assumption in hemodynamics models. Standardizing hemodynamic features with functional metrics enhances the differentiation between stroke and control cases. While standalone assessments provide limited clarity, the synergistic fusion of CMR-derived functional data and patient-informed CFD simulations offers a personalized and mechanistic understanding, distinctly segregating stroke from control cases. Specifically, our investigation reveals a crucial clinical insight: normalizing hemodynamic features based on ejection fraction fails to differentiate between stroke and control patients. Differently, when normalized with stroke volume, a clear and clinically significant distinction emerges and this holds true for both the left atrium and its appendage, providing valuable implications for precise stroke risk assessment in clinical settings. This work introduces a novel framework for seamlessly integrating hemodynamic and functional metrics, laying the groundwork for improved predictive models, and highlighting the significance of motion-informed, personalized risk assessments.


Assuntos
Átrios do Coração , Hemodinâmica , Hidrodinâmica , Acidente Vascular Cerebral , Humanos , Acidente Vascular Cerebral/fisiopatologia , Feminino , Masculino , Átrios do Coração/fisiopatologia , Átrios do Coração/diagnóstico por imagem , Pessoa de Meia-Idade , Medição de Risco/métodos , Idoso , Simulação por Computador , Modelos Cardiovasculares , Imagem Cinética por Ressonância Magnética/métodos
4.
medRxiv ; 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38559058

RESUMO

Background: Studies of VT mechanisms are largely based on a 2D portrait of reentrant circuits on one surface of the heart. This oversimplifies the 3D circuit that involves the depth of the myocardium. Simultaneous epicardial and endocardial (epi-endo) mapping was shown to facilitate a 3D delineation of VT circuits, which is however difficult via invasive mapping. Objective: This study investigates the capability of noninvasive epicardial-endocardial electrocardiographic imaging (ECGI) to elucidate the 3D construct of VT circuits, emphasizing the differentiation of epicardial, endocardial, and intramural circuits and to determine the proximity of mid-wall exits to the epicardial or endocardial surfaces. Methods: 120-lead ECGs of VT in combination with subject-specific heart-torso geometry are used to compute unipolar electrograms (CEGM) on ventricular epicardium and endocardia. Activation isochrones are constructed, and the percentage of activation within VT cycle length is calculated on each surface. This classifies VT circuits into 2D (surface only), uniform transmural, nonuniform transmural, and mid-myocardial (focal on surfaces). Furthermore, the endocardial breakthrough time was accurately measured using Laplacian eigenmaps, and by correlating the delay time of the epi-endo breakthroughs, the relative distance of a mid-wall exit to the epicardium or the endocardium surfaces was identified. Results: We analyzed 23 simulated and in-vivo VT circuits on post-infarction porcine hearts. In simulated circuits, ECGI classified 21% as 2D and 78% as 3D: 82.6% of these were correctly classified. The relative timing between epicardial and endocardial breakthroughs was correctly captured across all cases. In in-vivo circuits, ECGI classified 25% as 2D and 75% as 3D: in all cases, circuit exits and entrances were consistent with potential critical isthmus delineated from combined LGE-MRI and catheter mapping data. Conclusions: ECGI epi-endo mapping has the potential for fast delineation of 3D VT circuits, which may augment detailed catheter mapping for VT ablation.

5.
ArXiv ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38560740

RESUMO

Morphological variations in the left atrial appendage (LAA) are associated with different levels of ischemic stroke risk for patients with atrial fibrillation (AF). Studying LAA morphology can elucidate mechanisms behind this association and lead to the development of advanced stroke risk stratification tools. However, current categorical descriptions of LAA morphologies are qualitative and inconsistent across studies, which impedes advancements in our understanding of stroke pathogenesis in AF. To mitigate these issues, we introduce a quantitative pipeline that combines elastic shape analysis with unsupervised learning for the categorization of LAA morphology in AF patients. As part of our pipeline, we compute pairwise elastic distances between LAA meshes from a cohort of 20 AF patients, and leverage these distances to cluster our shape data. We demonstrate that our method clusters LAA morphologies based on distinctive shape features, overcoming the innate inconsistencies of current LAA categorization systems, and paving the way for improved stroke risk metrics using objective LAA shape groups.

6.
Heliyon ; 10(5): e26858, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38449599

RESUMO

Background: Atrial fibrillation (AF) patients are at high risk of stroke with ∼90% clots originating from the left atrial appendage (LAA). Clinical understanding of blood-flow based parameters and their potential association with stroke for AF patients remains poorly understood. We hypothesize that slow blood-flow either in the LA or the LAA could lead to the formation of blood clots and is associated with stroke for AF patients. Methods: We retrospectively collected cardiac CT images of paroxysmal AF patients and dichotomized them based on clinical event of previous embolic event into stroke and non-stroke groups. After image segmentation to obtain 3D LA geometry, patient-specific blood-flow analysis was performed to model LA hemodynamics. In terms of geometry, we calculated area of the pulmonary veins (PVs), mitral valve, LA and LAA, orifice area of LAA and volumes of LA and LAA and classified LAA morphologies. For hemodynamic assessment, we quantified blood flow velocity, wall shear stress (WSS, blood-friction on LA wall), oscillatory shear index (OSI, directional change of WSS) and endothelial cell activation potential (ECAP, ratio of OSI and WSS quantifying slow and oscillatory flow) in the LA as well as the LAA. Statistical analysis was performed to compare the parameters between the groups. Results: Twenty-seven patients were included in the stroke and 28 in the non-stroke group. Examining geometrical parameters, area of left inferior PV was found to be significantly higher in the stroke group as compared to non-stroke group (p = 0.026). In terms of hemodynamics, stroke group had significantly lower blood velocity (p = 0.027), WSS (p = 0.018) and higher ECAP (p = 0.032) in the LAA as compared to non-stroke group. However, LAA morphologic type did not differ between the two groups. This suggests that stroke patients had significantly slow and oscillatory circulating blood-flow in the LAA, which might expose it to potential thrombogenesis. Conclusion: Slow flow in the LAA alone was associated with stroke in this paroxysmal AF cohort. Patient-specific blood-flow analysis can potentially identify such hemodynamic conditions, aiding in clinical stroke risk stratification of AF patients.

7.
bioRxiv ; 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38293150

RESUMO

Stroke, a major global health concern often rooted in cardiac dynamics, demands precise risk evaluation for targeted intervention. Current risk models, like the CHA2DS2-VASc score, often lack the granularity required for personalized predictions. In this study, we present a nuanced and thorough stroke risk assessment by integrating functional insights from cardiac magnetic resonance (CMR) with patient-specific computational fluid dynamics (CFD) simulations. Our cohort, evenly split between control and stroke groups, comprises eight patients. Utilizing CINE CMR, we compute kinematic features, revealing smaller left atrial volumes for stroke patients. The incorporation of patient-specific atrial displacement into our hemodynamic simulations unveils the influence of atrial compliance on the flow fields, emphasizing the importance of LA motion in CFD simulations and challenging the conventional rigid wall assumption in hemodynamics models. Standardizing hemodynamic features with functional metrics enhances the differentiation between stroke and control cases. While standalone assessments provide limited clarity, the synergistic fusion of CMR-derived functional data and patient-informed CFD simulations offers a personalized and mechanistic understanding, distinctly segregating stroke from control cases. Specifically, our investigation reveals a crucial clinical insight: normalizing hemodynamic features based on ejection fraction fails to differentiate between stroke and control patients. Differently, when normalized with stroke volume, a clear and clinically significant distinction emerges and this holds true for both the left atrium and its appendage, providing valuable implications for precise stroke risk assessment in clinical settings. This work introduces a novel framework for seamlessly integrating hemodynamic and functional metrics, laying the groundwork for improved predictive models, and highlighting the significance of motion-informed, personalized risk assessments.

8.
Heart Rhythm ; 21(1): 89-99, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37871809

RESUMO

Precision medicine is the vision of health care where therapy is tailored to each patient. As part of this vision, digital twinning technology promises to deliver a digital representation of organs or even patients by using tools capable of simulating personal health conditions and predicting patient or disease trajectories on the basis of relationships learned both from data and from biophysics knowledge. Such virtual replicas would update themselves with data from monitoring devices and medical tests and assessments, reflecting dynamically the changes in our health conditions and the responses to treatment. In precision cardiology, the concepts and initial applications of heart digital twins have slowly been gaining popularity and the trust of the clinical community. In this article, we review the advancement in heart digital twinning and its initial translation to the management of heart rhythm disorders.


Assuntos
Fibrilação Atrial , Humanos , Fibrilação Atrial/terapia , Coração , Assistência ao Paciente
9.
Physiol Rev ; 104(3): 1265-1333, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38153307

RESUMO

The complexity of cardiac electrophysiology, involving dynamic changes in numerous components across multiple spatial (from ion channel to organ) and temporal (from milliseconds to days) scales, makes an intuitive or empirical analysis of cardiac arrhythmogenesis challenging. Multiscale mechanistic computational models of cardiac electrophysiology provide precise control over individual parameters, and their reproducibility enables a thorough assessment of arrhythmia mechanisms. This review provides a comprehensive analysis of models of cardiac electrophysiology and arrhythmias, from the single cell to the organ level, and how they can be leveraged to better understand rhythm disorders in cardiac disease and to improve heart patient care. Key issues related to model development based on experimental data are discussed, and major families of human cardiomyocyte models and their applications are highlighted. An overview of organ-level computational modeling of cardiac electrophysiology and its clinical applications in personalized arrhythmia risk assessment and patient-specific therapy of atrial and ventricular arrhythmias is provided. The advancements presented here highlight how patient-specific computational models of the heart reconstructed from patient data have achieved success in predicting risk of sudden cardiac death and guiding optimal treatments of heart rhythm disorders. Finally, an outlook toward potential future advances, including the combination of mechanistic modeling and machine learning/artificial intelligence, is provided. As the field of cardiology is embarking on a journey toward precision medicine, personalized modeling of the heart is expected to become a key technology to guide pharmaceutical therapy, deployment of devices, and surgical interventions.


Assuntos
Arritmias Cardíacas , Modelos Cardiovasculares , Humanos , Arritmias Cardíacas/fisiopatologia , Animais , Simulação por Computador , Pesquisa Translacional Biomédica , Miócitos Cardíacos/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Potenciais de Ação/fisiologia
11.
Elife ; 122023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37851708

RESUMO

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a genetic cardiac disease that leads to ventricular tachycardia (VT), a life-threatening heart rhythm disorder. Treating ARVC remains challenging due to the complex underlying arrhythmogenic mechanisms, which involve structural and electrophysiological (EP) remodeling. Here, we developed a novel genotype-specific heart digital twin (Geno-DT) approach to investigate the role of pathophysiological remodeling in sustaining VT reentrant circuits and to predict the VT circuits in ARVC patients of different genotypes. This approach integrates the patient's disease-induced structural remodeling reconstructed from contrast-enhanced magnetic-resonance imaging and genotype-specific cellular EP properties. In our retrospective study of 16 ARVC patients with two genotypes: plakophilin-2 (PKP2, n = 8) and gene-elusive (GE, n = 8), we found that Geno-DT accurately and non-invasively predicted the VT circuit locations for both genotypes (with 100%, 94%, 96% sensitivity, specificity, and accuracy for GE patient group, and 86%, 90%, 89% sensitivity, specificity, and accuracy for PKP2 patient group), when compared to VT circuit locations identified during clinical EP studies. Moreover, our results revealed that the underlying VT mechanisms differ among ARVC genotypes. We determined that in GE patients, fibrotic remodeling is the primary contributor to VT circuits, while in PKP2 patients, slowed conduction velocity and altered restitution properties of cardiac tissue, in addition to the structural substrate, are directly responsible for the formation of VT circuits. Our novel Geno-DT approach has the potential to augment therapeutic precision in the clinical setting and lead to more personalized treatment strategies in ARVC.


Assuntos
Displasia Arritmogênica Ventricular Direita , Taquicardia Ventricular , Humanos , Displasia Arritmogênica Ventricular Direita/genética , Estudos Retrospectivos , Taquicardia Ventricular/genética , Arritmias Cardíacas , Genótipo
12.
J Am Coll Cardiol ; 82(8): 735-747, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37587585

RESUMO

Nonischemic cardiomyopathy (NICM) is common and patients are at significant risk for early mortality secondary to ventricular arrhythmias. Current guidelines recommend implantable cardioverter-defibrillator (ICD) therapy to decrease sudden cardiac death (SCD) in patients with heart failure and reduced left ventricular ejection fraction. However, in randomized clinical trials comprised solely of patients with NICM, primary prevention ICDs did not confer significant mortality benefit. Moreover, left ventricular ejection fraction has limited sensitivity and specificity for predicting SCD. Therefore, precise risk stratification algorithms are needed to define those at the highest risk of SCD. This review examines mechanisms of sudden arrhythmic death in patients with NICM, discusses the role of ICD therapy and treatment of heart failure for prevention of SCD in patients with NICM, examines the role of cardiac magnetic resonance imaging and computational modeling for SCD risk stratification, and proposes new strategies to guide future clinical trials on SCD risk assessment in patients with NICM.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Humanos , Volume Sistólico , Função Ventricular Esquerda , Cardiomiopatias/complicações , Cardiomiopatias/terapia , Morte Súbita Cardíaca/epidemiologia , Morte Súbita Cardíaca/etiologia , Morte Súbita Cardíaca/prevenção & controle
13.
Europace ; 25(8)2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37622578

RESUMO

Catheter ablation is nowadays considered the treatment of choice for numerous cardiac arrhythmias in different clinical scenarios. Fluoroscopy has traditionally been the primary imaging modality for catheter ablation, providing real-time visualization of catheter navigation. However, its limitations, such as inadequate soft tissue visualization and exposure to ionizing radiation, have prompted the integration of alternative imaging modalities. Over the years, advancements in imaging techniques have played a pivotal role in enhancing the safety, efficacy, and efficiency of catheter ablation procedures. This manuscript aims to explore the utility of imaging, including electroanatomical mapping, cardiac computed tomography, echocardiography, cardiac magnetic resonance, and nuclear cardiology exams, in helping electrophysiology procedures. These techniques enable accurate anatomical guidance, identification of critical structures and substrates, and real-time monitoring of complications, ultimately enhancing procedural safety and success rates. Incorporating advanced imaging technologies into routine clinical practice has the potential to further improve clinical outcomes of catheter ablation procedures and pave the way for more personalized and precise ablation therapies in the future.


Assuntos
Fibrilação Atrial , Cardiologia , Humanos , Átrios do Coração , Eletrofisiologia Cardíaca , Ecocardiografia
14.
Heart Rhythm ; 20(12): 1699-1705, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37640127

RESUMO

BACKGROUND: Among patients with ischemic cardiomyopathy (ICM) and nonischemic cardiomyopathy (NICM), myocardial fibrosis is associated with an increased risk for ventricular arrhythmia (VA). Growing evidence suggests that myocardial fat contributes to ventricular arrhythmogenesis. However, little is known about the volume and distribution of epicardial adipose tissue and intramyocardial fat and their relationship with VAs. OBJECTIVE: The purpose of this study was to assess the association of contrast-enhanced computed tomography (CE-CT)-derived left ventricular (LV) tissue heterogeneity, epicardial adipose tissue volume, and intramyocardial fat volume with the risk of VA in ICM and NICM patients. METHODS: Patients enrolled in the PROSE-ICD registry who underwent CE-CT were included. Intramyocardial fat volume (voxels between -180 and -5 Hounsfield units [HU]), epicardial adipose tissue volume (between -200 and -50 HU), and LV tissue heterogeneity were calculated. The primary endpoint was appropriate ICD shocks or sudden arrhythmic death. RESULTS: Among 98 patients (47 ICM, 51 NICM), LV tissue heterogeneity was associated with VA (odds ratio [OR] 1.10; P = .01), particularly in the ICM cohort. In the NICM subgroup, epicardial adipose tissue and intramyocardial fat volume were associated with VA (OR 1.11, P = .01; and OR = 1.21, P = .01, respectively) but not in the ICM patients (OR 0.92, P =.22; and OR = 0.96, P =.19, respectively). CONCLUSION: In ICM patients, increased fat distribution heterogeneity is associated with VA. In NICM patients, an increased volume of intramyocardial fat and epicardial adipose tissue is associated with a higher risk for VA. Our findings suggest that fat's contribution to VAs depends on the underlying substrate.


Assuntos
Cardiomiopatias , Isquemia Miocárdica , Taquicardia Ventricular , Humanos , Arritmias Cardíacas , Cardiomiopatias/etiologia , Cardiomiopatias/complicações , Isquemia Miocárdica/complicações , Miocárdio
15.
medRxiv ; 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37398074

RESUMO

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a genetic cardiac disease that leads to ventricular tachycardia (VT), a life-threatening heart rhythm disorder. Treating ARVC remains challenging due to the complex underlying arrhythmogenic mechanisms, which involve structural and electrophysiological (EP) remodeling. Here, we developed a novel genotype-specific heart digital twin (Geno-DT) approach to investigate the role of pathophysiological remodeling in sustaining VT reentrant circuits and to predict the VT circuits in ARVC patients of different genotypes. This approach integrates the patient's disease-induced structural remodeling reconstructed from contrast-enhanced magnetic-resonance imaging and genotype-specific cellular EP properties. In our retrospective study of 16 ARVC patients with two genotypes: plakophilin-2 (PKP2, n = 8) and gene-elusive (GE, n = 8), we found that Geno-DT accurately and non-invasively predicted the VT circuit locations for both genotypes (with 100%, 94%, 96% sensitivity, specificity, and accuracy for GE patient group, and 86%, 90%, 89% sensitivity, specificity, and accuracy for PKP2 patient group), when compared to VT circuit locations identified during clinical EP studies. Moreover, our results revealed that the underlying VT mechanisms differ among ARVC genotypes. We determined that in GE patients, fibrotic remodeling is the primary contributor to VT circuits, while in PKP2 patients, slowed conduction velocity and altered restitution properties of cardiac tissue, in addition to the structural substrate, are directly responsible for the formation of VT circuits. Our novel Geno-DT approach has the potential to augment therapeutic precision in the clinical setting and lead to more personalized treatment strategies in ARVC.

16.
Artigo em Inglês | MEDLINE | ID: mdl-37427298

RESUMO

Artificial intelligence has become ubiquitous. Machine learning, a branch of artificial intelligence, leads the current technological revolution through its remarkable ability to learn and perform on data sets of varying types. Machine learning applications are expected to change contemporary medicine as they are brought into mainstream clinical practice. In the field of cardiac arrhythmia and electrophysiology, machine learning applications have enjoyed rapid growth and popularity. To facilitate clinical acceptance of these methodologies, it is important to promote general knowledge of machine learning in the wider community and continue to highlight the areas of successful application. The authors present a primer to provide an overview of common supervised (least squares, support vector machine, neural networks and random forest) and unsupervised (k-means and principal component analysis) machine learning models. The authors also provide explanations as to how and why the specific machine learning models have been used in arrhythmia and electrophysiology studies.

18.
Artigo em Inglês | MEDLINE | ID: mdl-37287952

RESUMO

Accurate quantification of left atrium (LA) scar in patients with atrial fibrillation is essential to guide successful ablation strategies. Prior to LA scar quantification, a proper LA cavity segmentation is required to ensure exact location of scar. Both tasks can be extremely time-consuming and are subject to inter-observer disagreements when done manually. We developed and validated a deep neural network to automatically segment the LA cavity and the LA scar. The global architecture uses a multi-network sequential approach in two stages which segment the LA cavity and the LA Scar. Each stage has two steps: a region of interest Neural Network and a refined segmentation network. We analysed the performances of our network according to different parameters and applied data triaging. 200+ late gadolinium enhancement magnetic resonance images were provided by the LAScarQS 2022 Challenge. Finally, we compared our performances for scar quantification to the literature and demonstrated improved performances.

19.
JACC Clin Electrophysiol ; 9(8 Pt 2): 1464-1474, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37294264

RESUMO

BACKGROUND: Regional myocardial conduction velocity (CV) dispersion has not been studied in postinfarct patients with ventricular tachycardia (VT). OBJECTIVES: This study sought to compare the following: 1) the association of CV dispersion vs repolarization dispersion with VT circuit sites; and 2) myocardial lipomatous metaplasia (LM) vs fibrosis as the anatomic substrate for CV dispersion. METHODS: Among 33 postinfarct patients with VT, we characterized dense and border zone infarct tissue by late gadolinium enhancement cardiac magnetic resonance, and LM by computed tomography, with both images registered with electroanatomic maps. Activation recovery interval (ARI) was the time interval from the minimum derivative within the QRS complex to the maximum derivative within the T-wave on unipolar electrograms. CV at each EAM point was the mean CV between that point and 5 adjacent points along the activation wave front. CV and ARI dispersion were the coefficient of variation (CoV) of CV and ARI per American Heart Association (AHA) segment, respectively. RESULTS: Regional CV dispersion exhibited a much larger range than ARI dispersion, with median 0.65 vs 0.24; P < 0.001. CV dispersion was a more robust predictor of the number of critical VT sites per AHA segment than ARI dispersion. Regional LM area was more strongly associated with CV dispersion than fibrosis area. LM area was larger (median 0.44 vs 0.20 cm2; P < 0.001) in AHA segments with mean CV <36 cm/s and CoV_CV >0.65 than those with mean CV <36 cm/s and CoV_CV <0.65. CONCLUSIONS: Regional CV dispersion more strongly predicts VT circuit sites than repolarization dispersion, and LM is a critical substrate for CV dispersion.


Assuntos
Infarto do Miocárdio , Taquicardia Ventricular , Humanos , Meios de Contraste , Gadolínio , Arritmias Cardíacas/complicações , Fibrose
20.
JACC Clin Electrophysiol ; 9(8 Pt 1): 1235-1245, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37227343

RESUMO

BACKGROUND: Myocardial lipomatous metaplasia (LM) has been reported to be associated with post-infarct ventricular tachycardia (VT) circuitry. OBJECTIVES: This study examined the association of scar versus LM composition with impulse conduction velocity (CV) in putative VT corridors that traverse the infarct zone in post-infarct patients. METHODS: The cohort included 31 post-infarct patients from the prospective INFINITY (Intra-Myocardial Fat Deposition and Ventricular Tachycardia in Cardiomyopathy) study. Myocardial scar, border zone, and potential viable corridors were defined by late gadolinium enhancement cardiac magnetic resonance (LGE-CMR), and LM was defined by computed tomography. Images were registered to electroanatomic maps, and the CV at each electroanatomic map point was calculated as the mean CV between that point and 5 adjacent points along the activation wave front. RESULTS: Regions with LM exhibited lower CV than scar (median = 11.9 vs 13.5 cm/s; P < 0.001). Of 94 corridors computed from LGE-CMR and electrophysiologically confirmed to participate in VT circuitry, 93 traversed through or near LM. These critical corridors displayed slower CV (median 8.8 [IQR: 5.9-15.7] cm/s vs 39.2 [IQR: 28.1-58.5]) cm/s; P < 0.001) than 115 noncritical corridors distant from LM. Additionally, critical corridors demonstrated low-peripheral, high-center (mountain shaped, 23.3%) or mean low-level (46.7%) CV patterns compared with 115 noncritical corridors distant from LM that displayed high-peripheral, low-center (valley shaped, 19.1%) or mean high-level (60.9%) CV patterns. CONCLUSIONS: The association of myocardial LM with VT circuitry is at least partially mediated by slowing nearby corridor CV thus facilitating an excitable gap that enables circuit re-entry.


Assuntos
Infarto do Miocárdio , Taquicardia Ventricular , Humanos , Meios de Contraste , Cicatriz/diagnóstico por imagem , Cicatriz/patologia , Estudos Prospectivos , Gadolínio , Miocárdio/patologia , Taquicardia Ventricular/etiologia , Taquicardia Ventricular/complicações , Arritmias Cardíacas/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA