Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Water Res ; 260: 121875, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38875855

RESUMO

Global surface waters are in a bad ecological and chemical state, which has detrimental effects on entire ecosystems. To prevent further deterioration of ecosystems and ecosystem services, it is vital to minimize environmental pollution and come up with ways to keep surface water healthy and clean. Recently, photogranules have emerged as a promising platform for wastewater treatment to remove organic matter and nutrients with reduced or eliminated mechanical aeration, while also facilitating CO2 capture and production of various bioproducts. Photogranules are microbial aggregates of microalgae, cyanobacteria, and other non-phototrophic organisms that form dense spheroidic granules. Photogranules settle fast and can be easily retained in the treatment system, which allows increased amounts of water and wastewater to be treated. So far, photogranules have only been tested on various "high-strength" wastewaters but they might be an excellent choice for treatment of large volumes of polluted surface water as well. Here, we propose and tested for the first time photogranules on their effectiveness to remove nutrients from polluted surface water at unprecedented low concentrations (3.2 mg/L of nitrogen and 0.12 mg/L of phosphorous) and low hydraulic retention time (HRT = 1.5 h). Photogranules can successfully remove nitrogen (<0.6 mg/L, ∼80 % removal) and phosphorous (<0.01 mg/L, 90-95 % removal) to low levels in sequencing batch operation even without the need for pH control. Subjecting photogranules to surface water treatment conditions drastically changed their morphology. While, under "high-strength" conditions the photogranules were spherical, dense and defined, under polluted surface water conditions photogranules increased their surface area by forming fingers. However, this did not compromise their excellent settling properties. Finally, we discuss the future perspectives of photogranular technology for surface water treatment.


Assuntos
Fósforo , Purificação da Água/métodos , Eliminação de Resíduos Líquidos/métodos , Nitrogênio , Águas Residuárias/química , Poluentes Químicos da Água , Microalgas , Cianobactérias
2.
ISME J ; 17(6): 870-879, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36997724

RESUMO

Photogranules are spherical aggregates formed of complex phototrophic ecosystems with potential for "aeration-free" wastewater treatment. Photogranules from a sequencing batch reactor were investigated by fluorescence microscopy, 16S/18S rRNA gene amplicon sequencing, microsensors, and stable- and radioisotope incubations to determine the granules' composition, nutrient distribution, and light, carbon, and nitrogen budgets. The photogranules were biologically and chemically stratified, with filamentous cyanobacteria arranged in discrete layers and forming a scaffold to which other organisms were attached. Oxygen, nitrate, and light gradients were also detectable. Photosynthetic activity and nitrification were both predominantly restricted to the outer 500 µm, but while photosynthesis was relatively insensitive to the oxygen and nutrient (ammonium, phosphate, acetate) concentrations tested, nitrification was highly sensitive. Oxygen was cycled internally, with oxygen produced through photosynthesis rapidly consumed by aerobic respiration and nitrification. Oxygen production and consumption were well balanced. Similarly, nitrogen was cycled through paired nitrification and denitrification, and carbon was exchanged through photosynthesis and respiration. Our findings highlight that photogranules are complete, complex ecosystems with multiple linked nutrient cycles and will aid engineering decisions in photogranular wastewater treatment.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Ecossistema , Reatores Biológicos , Nitrificação , Oxigênio , Nitrogênio , Carbono , Desnitrificação , Esgotos
3.
Water Res ; 235: 119748, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36944303

RESUMO

Photogranules are a novel wastewater treatment technology that can utilize the sun's energy to treat water with lower energy input and have great potential for nutrient recovery applications. They have been proven to efficiently remove nitrogen and carbon but show lower conversion rates for phosphorus compared to established treatment systems, such as aerobic granular sludge. In this study, we successfully introduced polyphosphate accumulating organisms (PAOs) to an established photogranular culture. We operated photobioreactors in sequencing batch mode with six cycles per day and alternating anaerobic (dark) and aerobic (light) phases. We were able to increase phosphorus removal/recovery by 6 times from 5.4 to 30 mg/L/d while maintaining similar nitrogen and carbon removal compared to photogranules without PAOs. To maintain PAOs activity, alternating anaerobic feast and aerobic famine conditions were required. In future applications, where aerobic conditions are dependent on in-situ oxygenation via photosynthesis, the process will rely on sunlight availability. Therefore, we investigated the feasibility of the process under diurnal cycles with a 12-h anaerobic phase during nighttime and six short cycles during the 12 h daytime. The 12-h anaerobic phase had no adverse effect on the PAOs and phototrophs. Due to the extension of one anaerobic phase to 12 h the six aerobic phases were shortened by 47% and consequently decreased the light hours per day. This resulted in a decrease of phototrophs, which reduced nitrogen removal and biomass productivity up to 30%. Finally, we discuss and suggest strategies to apply PAO-enriched photogranules at large-scale.


Assuntos
Fósforo , Polifosfatos , Reatores Biológicos , Esgotos , Fotobiorreatores , Carbono , Nitrogênio
4.
Biotechnol Bioeng ; 120(5): 1303-1315, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36779371

RESUMO

Wastewater characteristics can vary significantly, and in some municipal wastewaters the N:P ratio is as low as 5 resulting in nitrogen-limiting conditions. In this study, the microbial community, function, and morphology of photogranules under nitrogen-replete (N+) and limiting (N-) conditions was assessed in sequencing batch reactors. Photogranules under N- condition were nitrogen deprived 2/3 of a batch cycle duration. Surprisingly, this nitrogen limitation had no adverse effect on biomass productivity. Moreover, phosphorus and chemical oxygen demand removal were similar to their removal under N+ conditions. Although performance was similar, the difference in granule morphology was obvious. While N+ photogranules were dense and structurally confined, N- photogranules showed loose structures with occasional voids. Microbial community analysis revealed high abundance of cyanobacteria capable of N2 -fixation. These were higher at N- (38%) than N+ (29%) treatments, showing that photogranules could adjust and maintain treatment performance and high biomass productivity by means of N2 -fixation.


Assuntos
Cianobactérias , Águas Residuárias , Nitrogênio , Biomassa , Fósforo , Reatores Biológicos , Esgotos , Eliminação de Resíduos Líquidos/métodos
5.
Front Microbiol ; 8: 1742, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28955317

RESUMO

Global stores of important resources such as phosphorus (P) are being rapidly depleted, while the excessive use of nutrients has led to the enrichment of surface waters worldwide. Ideally, nutrients would be recovered from wastewater, which will not only prevent eutrophication but also provide access to alternative nutrient stores. Current state-of-the-art wastewater treatment technologies are effective in removing these nutrients from wastewater, yet they can only recover P and often in an insufficient way. Microalgae, however, can effectively assimilate P and nitrogen (N), as well as other macro- and micronutrients, allowing these nutrients to be recovered into valuable products that can be used to close nutrient cycles (e.g., fertilizer, bioplastics, color dyes, and bulk chemicals). Here, we show that the green alga Chlorella sorokiniana is able to remove all inorganic N and P present in concentrated toilet wastewater (i.e., black water) with N:P ratios ranging between 15 and 26. However, the N and P uptake by the algae is imbalanced relative to the wastewater N:P stoichiometry, resulting in a rapid removal of P but relatively slower removal of N. Here, we discuss how ecological principles such as ecological stoichiometry and resource-ratio theory may help optimize N:P removal and allow for more effective recovery of N and P from black water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA