Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Clin Microbiol ; 62(1): e0098123, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38084949

RESUMO

Animal contact is an established risk factor for nontyphoidal Salmonella infections and outbreaks. During 2015-2018, the U.S. Centers for Disease Control and Prevention (CDC) and other U.S. public health laboratories began implementing whole-genome sequencing (WGS) of Salmonella isolates. WGS was used to supplement the traditional methods of pulsed-field gel electrophoresis for isolate subtyping, outbreak detection, and antimicrobial susceptibility testing (AST) for the detection of resistance. We characterized the epidemiology and antimicrobial resistance (AMR) of multistate salmonellosis outbreaks linked to animal contact during this time period. An isolate was considered resistant if AST yielded a resistant (or intermediate, for ciprofloxacin) interpretation to any antimicrobial tested by the CDC or if WGS showed a resistance determinant in its genome for one of these agents. We identified 31 outbreaks linked to contact with poultry (n = 23), reptiles (n = 6), dairy calves (n = 1), and guinea pigs (n = 1). Of the 26 outbreaks with resistance data available, we identified antimicrobial resistance in at least one isolate from 20 outbreaks (77%). Of 1,309 isolates with resistance information, 247 (19%) were resistant to ≥1 antimicrobial, and 134 (10%) were multidrug-resistant to antimicrobials from ≥3 antimicrobial classes. The use of resistance data predicted from WGS increased the number of isolates with resistance information available fivefold compared with AST, and 28 of 43 total resistance patterns were identified exclusively by WGS; concordance was high (>99%) for resistance determined by AST and WGS. The use of predicted resistance from WGS enhanced the characterization of the resistance profiles of outbreaks linked to animal contact by providing resistance information for more isolates.


Assuntos
Salmonelose Animal , Infecções por Salmonella , Animais , Bovinos , Estados Unidos/epidemiologia , Cobaias , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Infecções por Salmonella/epidemiologia , Aves Domésticas , Surtos de Doenças , Testes de Sensibilidade Microbiana , Salmonelose Animal/epidemiologia
2.
J Microbiol Methods ; 211: 106784, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37451348

RESUMO

The Illumina iSeq low-capacity sequencing platform was evaluated for use in foodborne disease surveillance and outbreak detection. The platform produced high quality sequence data comparable to that of the Illumina MiSeq and was cost-effective with fast turn-around time in low sample volume environments.


Assuntos
Surtos de Doenças , Doenças Transmitidas por Alimentos , Humanos , Sequenciamento Completo do Genoma , Doenças Transmitidas por Alimentos/epidemiologia , Confiabilidade dos Dados , Sequenciamento de Nucleotídeos em Larga Escala , Genoma Bacteriano
3.
Foodborne Pathog Dis ; 19(8): 569-578, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35861967

RESUMO

Enzymatic library preparation kits are increasingly used for bacterial whole genome sequencing. While they offer a rapid workflow, the transposases used in the kits are recognized to be somewhat biased. The aim of this study was to optimize and validate a protocol for the Illumina DNA Prep kit (formerly Nextera DNA Flex) for sequencing enteric pathogens and compare its performance against the Nextera XT kit. One hundred forty-three strains of Campylobacter, Escherichia, Listeria, Salmonella, Shigella, and Vibrio were prepared with both methods and sequenced on the Illumina MiSeq using 300 and/or 500 cycle chemistries. Sequences were compared using core genome multilocus sequence typing (cgMLST), 7-gene multilocus sequence typing (MLST), and detection of markers encoding serotype, virulence, and antimicrobial resistance. Sequences for one Escherichia strain were downsampled to determine the minimum coverage required for the analyses. While organism-specific differences were observed, the Prep libraries generated longer average read lengths and less fragmented assemblies compared to the XT libraries. In downstream analysis, the most notable difference between the kits was observed for Escherichia, particularly for the 300 cycle sequences. The O group was not predicted in 32% and 4% of XT sequences when using blast and kmer algorithms, respectively, while the O group was predicted from all Prep sequences regardless of the algorithm. In addition, the ehxA gene was not detected in 6% of XT sequences and 34% were missing one or more of the type III secretion systems and/or plasmid-associated genes, which were detected in the Prep sequences. The coverage downsampling revealed that acceptable assembly quality and allele detection was achieved at 30 × coverage with the Prep libraries, whereas 40-50 × coverage was required for the XT libraries. The better performance of the Prep libraries was attributed to more even coverage, particularly in genome regions low in GC content.


Assuntos
Microbioma Gastrointestinal , Genoma Bacteriano , DNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Tipagem de Sequências Multilocus
4.
J Food Prot ; 85(5): 755-772, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35259246

RESUMO

ABSTRACT: This multiagency report developed by the Interagency Collaboration for Genomics for Food and Feed Safety provides an overview of the use of and transition to whole genome sequencing (WGS) technology for detection and characterization of pathogens transmitted commonly by food and for identification of their sources. We describe foodborne pathogen analysis, investigation, and harmonization efforts among the following federal agencies: National Institutes of Health; Department of Health and Human Services, Centers for Disease Control and Prevention (CDC) and U.S. Food and Drug Administration (FDA); and the U.S. Department of Agriculture, Food Safety and Inspection Service, Agricultural Research Service, and Animal and Plant Health Inspection Service. We describe single nucleotide polymorphism, core-genome, and whole genome multilocus sequence typing data analysis methods as used in the PulseNet (CDC) and GenomeTrakr (FDA) networks, underscoring the complementary nature of the results for linking genetically related foodborne pathogens during outbreak investigations while allowing flexibility to meet the specific needs of Interagency Collaboration partners. We highlight how we apply WGS to pathogen characterization (virulence and antimicrobial resistance profiles) and source attribution efforts and increase transparency by making the sequences and other data publicly available through the National Center for Biotechnology Information. We also highlight the impact of current trends in the use of culture-independent diagnostic tests for human diagnostic testing on analytical approaches related to food safety and what is next for the use of WGS in the area of food safety.


Assuntos
Doenças Transmitidas por Alimentos , Animais , Surtos de Doenças/prevenção & controle , Inocuidade dos Alimentos , Doenças Transmitidas por Alimentos/epidemiologia , Doenças Transmitidas por Alimentos/prevenção & controle , Genômica , Estados Unidos , Sequenciamento Completo do Genoma
5.
Foodborne Pathog Dis ; 19(3): 199-208, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34989634

RESUMO

In August 2016, the Wisconsin Department of Health Services notified the U.S. Centers for Disease Control and Prevention of multidrug-resistant (MDR) Salmonella enterica serovar Heidelberg infections in people who reported contact with dairy calves. Federal and state partners investigated this to identify the source and scope of the outbreak and to prevent further illnesses. Cases were defined as human Salmonella Heidelberg infection caused by a strain that had one of seven pulsed-field gel electrophoresis (PFGE) patterns or was related by whole genome sequencing (WGS), with illness onset from January 1, 2015, through July 2, 2018. Patient exposure and calf purchase information was collected and analyzed; calves were traced back from the point of purchase. Isolates obtained from animal and environmental samples collected on-farm were supplied by veterinary diagnostic laboratories and compared with patient isolates using PFGE and WGS. Antimicrobial susceptibility testing by standardized broth microdilution was performed. Sixty-eight patients from 17 states were identified. Forty (63%) of 64 patients noted cattle contact before illness. Thirteen (33%) of 40 patients with exposure to calves reported that calves were sick or had died. Seven individuals purchased calves from a single Wisconsin livestock market. One hundred forty cattle from 14 states were infected with the outbreak strain. WGS indicated that human, cattle, and environmental isolates from the livestock market were genetically closely related. Most isolates (88%) had resistance or reduced susceptibility to antibiotics of ≥5 antibiotic classes. This resistance profile included first-line antibiotic treatments for patients with severe salmonellosis, including ampicillin, ceftriaxone, and ciprofloxacin. In this outbreak, MDR Salmonella Heidelberg likely spread from sick calves to humans, emphasizing the importance of illness surveillance in animal populations to prevent future spillover of this zoonotic disease.


Assuntos
Salmonella enterica , Animais , Antibacterianos/farmacologia , Bovinos , Surtos de Doenças/veterinária , Farmacorresistência Bacteriana Múltipla , Eletroforese em Gel de Campo Pulsado , Humanos , Testes de Sensibilidade Microbiana , Salmonella , Estados Unidos/epidemiologia
6.
PeerJ ; 9: e12446, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34900416

RESUMO

BACKGROUND: Whole genome sequencing (WGS) has gained increasing importance in responses to enteric bacterial outbreaks. Common analysis procedures for WGS, single nucleotide polymorphisms (SNPs) and genome assembly, are highly dependent upon WGS data quality. METHODS: Raw, unprocessed WGS reads from Escherichia coli, Salmonella enterica, and Shigella sonnei outbreak clusters were characterized for four quality metrics: PHRED score, read length, library insert size, and ambiguous nucleotide composition. PHRED scores were strongly correlated with improved SNPs analysis results in E. coli and S. enterica clusters. RESULTS: Assembly quality showed only moderate correlations with PHRED scores and library insert size, and then only for Salmonella. To improve SNP analyses and assemblies, we compared seven read-healing pipelines to improve these four quality metrics and to see how well they improved SNP analysis and genome assembly. The most effective read healing pipelines for SNPs analysis incorporated quality-based trimming, fixed-width trimming, or both. The Lyve-SET SNPs pipeline showed a more marked improvement than the CFSAN SNP Pipeline, but the latter performed better on raw, unhealed reads. For genome assembly, SPAdes enabled significant improvements in healed E. coli reads only, while Skesa yielded no significant improvements on healed reads. CONCLUSIONS: PHRED scores will continue to be a crucial quality metric albeit not of equal impact across all types of analyses for all enteric bacteria. While trimming-based read healing performed well for SNPs analyses, different read healing approaches are likely needed for genome assembly or other, emerging WGS analysis methodologies.

7.
Foodborne Pathog Dis ; 18(12): 894-901, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34520233

RESUMO

In this study, our objective was to evaluate the genetic stability of foodborne bacterial pathogens during serial passage in vitro and persistent in vivo carriage. Six strains of Listeria, Campylobacter, Escherichia, Salmonella, and Vibrio were serially passaged 20 times. Three colonies were picked for whole-genome sequencing (WGS) from passes P0, P5, P10, P15, and P20. In addition, isolates of Salmonella and Escherichia from three patients with persistent infections were sequenced. Genetic stability was evaluated in terms of variations detected in high-quality single-nucleotide polymorphism (hqSNP), core genome multilocus sequence typing (cgMLST), seven-gene MLST, and determinants encoding serotype, antimicrobial resistance (AMR), and virulence. During serial passage, increasing diversity was observed in Listeria, Salmonella, and Vibrio as measured by hqSNPs (from median of 0 SNPs to median of 3-5 SNPs, depending on the organism) and to a lesser extent with cgMLST (from median of 0 alleles to median of 0-5 alleles), while Escherichia and Campylobacter genomes showed minimal variation. The serotype, AMR, and virulence markers remained stable in all organisms. Isolates from persistent infections lasting up to 10 weeks remained genetically stable. However, isolates from a persistent Salmonella enterica ser. Montevideo infection spanning 9 years showed early heterogeneity leading to the emergence of one predominant genotype that continued to evolve over the years, including gains and losses of AMR markers. While the hqSNP and cgMLST variation observed during the serial passage was minimal, culture passages should be limited to as few times as possible before WGS. Our WGS data show that in vivo carriage lasting for a few weeks did not appear to alter the genotype. Longer persistent infections spanning for years, particularly in the presence of selective pressure, may cause changes in the genotype making it challenging to differentiate persistent infections from reinfections.


Assuntos
Genoma Bacteriano , Infecção Persistente , Humanos , Tipagem de Sequências Multilocus , Filogenia , Polimorfismo de Nucleotídeo Único , Inoculações Seriadas , Sequenciamento Completo do Genoma
9.
Sci Data ; 7(1): 402, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33214563

RESUMO

The US PulseNet and GenomeTrakr laboratory networks work together within the Genomics for Food Safety (Gen-FS) consortium to collect and analyze genomic data for foodborne pathogen surveillance (species include Salmonella enterica, Listeria monocytogenes, Escherichia coli (STECs), and Campylobactor). In 2017 these two laboratory networks started harmonizing their respective proficiency test exercises, agreeing on distributing a single strain-set and following the same standard operating procedure (SOP) for genomic data collection, running a jointly coordinated annual proficiency test exercise. In this data release we are publishing the reference genomes and raw data submissions for the 2017 and 2018 proficiency test exercises.


Assuntos
Microbiologia de Alimentos/métodos , Inocuidade dos Alimentos , Genômica/normas , Laboratórios/normas , Campylobacter/isolamento & purificação , Escherichia coli/isolamento & purificação , Genoma Bacteriano , Listeria monocytogenes/isolamento & purificação , Salmonella enterica/isolamento & purificação , Estados Unidos
10.
Am J Public Health ; 110(6): 842-849, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32298181

RESUMO

Objectives. To investigate a shigellosis outbreak in Genesee County, Michigan (including the City of Flint), and Saginaw County, Michigan, in 2016 and address community concerns about the role of the Flint water system.Methods. We met frequently with community members to understand concerns and develop the investigation. We surveyed households affected by the outbreak, analyzed Shigella isolate data, examined the geospatial distribution of cases, and reviewed available water quality data.Results. We surveyed 83 households containing 158 cases; median age was 10 years. Index case-patients from 55 of 83 households (66%) reported contact with a person outside their household who wore diapers or who had diarrhea in the week before becoming ill; results were similar regardless of household drinking water source. Genomic diversity was not consistent with a point source. In Flint, no space-time clustering was identified, and average free chlorine residual values remained above recommended levels throughout the outbreak period.Conclusions. The outbreak was most likely caused by person-to-person contact and not by the Flint water system. Consistent community engagement was essential to the design and implementation of the investigation.


Assuntos
Surtos de Doenças/estatística & dados numéricos , Água Potável/microbiologia , Disenteria Bacilar , Shigella sonnei , Abastecimento de Água , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Cidades , Disenteria Bacilar/epidemiologia , Disenteria Bacilar/microbiologia , Disenteria Bacilar/transmissão , Feminino , Humanos , Lactente , Masculino , Michigan/epidemiologia , Pessoa de Meia-Idade , Shigella sonnei/classificação , Shigella sonnei/genética , Shigella sonnei/isolamento & purificação , Qualidade da Água , Adulto Jovem
11.
Public Health Rep ; 134(2_suppl): 22S-28S, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31682558

RESUMO

PulseNet, the National Molecular Subtyping Network for Foodborne Disease Surveillance, was established in 1996 through a collaboration with the Centers for Disease Control and Prevention; the US Department of Agriculture, Food Safety and Inspection Service; the US Food and Drug Administration; 4 state public health laboratories; and the Association of Public Health Laboratories. The network has since expanded to include 83 state, local, and food regulatory public health laboratories. In 2016, PulseNet was estimated to be helping prevent an estimated 270 000 foodborne illnesses annually. PulseNet is undergoing a transformation toward whole-genome sequencing (WGS), which provides better discriminatory power and precision than pulsed-field gel electrophoresis (PFGE). WGS improves the detection of outbreak clusters and could replace many traditional reference identification and characterization methods. This article highlights the contributions made by public health laboratories in transforming PulseNet's surveillance and describes how the transformation is changing local and national surveillance practices. Our data show that WGS is better at identifying clusters than PFGE, especially for clonal organisms such as Salmonella Enteritidis. The need to develop prioritization schemes for cluster follow-up and additional resources for both public health laboratory and epidemiology departments will be critical as PulseNet implements WGS for foodborne disease surveillance in the United States.


Assuntos
Surtos de Doenças/prevenção & controle , Doenças Transmitidas por Alimentos/epidemiologia , Laboratórios , Vigilância em Saúde Pública , Saúde Pública , Eletroforese em Gel de Campo Pulsado , Humanos , Estados Unidos/epidemiologia , Sequenciamento Completo do Genoma
12.
Foodborne Pathog Dis ; 16(7): 504-512, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31246502

RESUMO

The routine use of whole-genome sequencing (WGS) as part of enteric disease surveillance is substantially enhancing our ability to detect and investigate outbreaks and to monitor disease trends. At the same time, it is revealing as never before the vast complexity of microbial and human interactions that contribute to outbreak ecology. Since WGS analysis is primarily used to characterize and compare microbial genomes with the goal of addressing epidemiological questions, it must be interpreted in an epidemiological context. In this article, we identify common challenges and pitfalls encountered when interpreting sequence data in an enteric disease surveillance and investigation context, and explain how to address them.


Assuntos
Doenças Transmitidas por Alimentos/epidemiologia , Epidemiologia Molecular/métodos , Saúde Pública , Sequenciamento Completo do Genoma , Análise por Conglomerados , Surtos de Doenças , Doenças Transmitidas por Alimentos/microbiologia , Genoma Bacteriano/genética , Humanos
13.
Foodborne Pathog Dis ; 16(7): 474-479, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31170005

RESUMO

Foodborne disease surveillance in the United States is at a critical point. Clinical and diagnostic laboratories are using culture-independent diagnostic tests (CIDTs) to identify the pathogen causing foodborne illness from patient specimens. CIDTs are molecular tests that allow doctors to rapidly identify the bacteria causing illness within hours. CIDTs, unlike previous gold standard methods such as bacterial culture, do not produce an isolate that can be subtyped as part of the national molecular subtyping network for foodborne disease surveillance, PulseNet. Without subtype information, cases can no longer be linked using molecular data to identify potentially related cases that are part of an outbreak. In this review, we discuss the public health needs for a molecular subtyping approach directly from patient specimen and highlight different approaches, including amplicon and shotgun metagenomic sequencing.


Assuntos
Doenças Transmitidas por Alimentos/microbiologia , Genoma Bacteriano/genética , Laboratórios , Metagenômica , Vigilância em Saúde Pública , Surtos de Doenças/prevenção & controle , Doenças Transmitidas por Alimentos/diagnóstico , Humanos , Saúde Pública , Estados Unidos
14.
Emerg Infect Dis ; 25(1): 82-91, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30561314

RESUMO

Increasingly, routine surveillance and monitoring of foodborne pathogens using whole-genome sequencing is creating opportunities to study foodborne illness epidemiology beyond routine outbreak investigations and case-control studies. Using a global phylogeny of Salmonella enterica serotype Typhimurium, we found that major livestock sources of the pathogen in the United States can be predicted through whole-genome sequencing data. Relatively steady rates of sequence divergence in livestock lineages enabled the inference of their recent origins. Elevated accumulation of lineage-specific pseudogenes after divergence from generalist populations and possible metabolic acclimation in a representative swine isolate indicates possible emergence of host adaptation. We developed and retrospectively applied a machine learning Random Forest classifier for genomic source prediction of Salmonella Typhimurium that correctly attributed 7 of 8 major zoonotic outbreaks in the United States during 1998-2013. We further identified 50 key genetic features that were sufficient for robust livestock source prediction.


Assuntos
Doenças Transmitidas por Alimentos/epidemiologia , Infecções por Salmonella/epidemiologia , Salmonella typhimurium/genética , Animais , Estudos de Casos e Controles , Surtos de Doenças , Monitoramento Epidemiológico , Doenças Transmitidas por Alimentos/microbiologia , Genômica , Humanos , Gado/microbiologia , Filogenia , Estudos Retrospectivos , Infecções por Salmonella/microbiologia , Salmonella typhimurium/isolamento & purificação , Estados Unidos/epidemiologia , Sequenciamento Completo do Genoma , Zoonoses
16.
MMWR Morb Mortal Wkly Rep ; 67(15): 443-446, 2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-29672479

RESUMO

In January 2017, CDC identified a cluster of Salmonella enterica serotype Newport infections with isolates sharing an indistinguishable pulsed-field gel electrophoresis (PFGE) pattern, JJPX01.0010 (pattern 10), through PulseNet, the national molecular subtyping network for foodborne disease surveillance. This report summarizes the investigation by CDC, state and local health and agriculture departments, and the U.S. Department of Agriculture's Food Safety and Inspection Service (USDA-FSIS) and discusses the possible role of dairy cows as a reservoir for strains of Salmonella that persistently cause human illness. This investigation combined epidemiologic and whole genome sequencing (WGS) data to link the outbreak to contaminated ground beef; dairy cows were hypothesized to be the ultimate source of Salmonella contamination.


Assuntos
Surtos de Doenças , Carne/microbiologia , Intoxicação Alimentar por Salmonella/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Bovinos , Criança , Pré-Escolar , Feminino , Microbiologia de Alimentos , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Salmonella enterica/genética , Salmonella enterica/isolamento & purificação , Estados Unidos/epidemiologia , Adulto Jovem
17.
PLoS One ; 13(12): e0208735, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30596673

RESUMO

Enterotoxigenic Escherichia coli (ETEC) are an important cause of diarrhea globally, particularly among children under the age of five in developing countries. ETEC O6 is the most common ETEC serogroup, yet the genome wide population structure of isolates of this serogroup is yet to be determined. In this study, we have characterized 40 ETEC O6 isolates collected between 1975-2016 by whole genome sequencing (WGS) and by phenotypic antimicrobial susceptibility testing. To determine the relatedness of isolates, we evaluated two methods-whole genome high-quality single nucleotide polymorphism (whole genome-hqSNP) and core genome SNP analyses using Lyve-SET and Parsnp respectively. All isolates were tested for antimicrobial susceptibility using a panel of 14 antibiotics. ResFinder 2.1 and a custom quinolone resistance determinants workflow were used for resistance determinant detection. VirulenceFinder 1.5 was used for prediction of the virulence genes. Thirty-seven isolates clustered into three major clades (I, II, III) by whole genome-hqSNP and core genome SNP analyses, while three isolates included in the whole genome-hqSNP analysis only did not cluster with clades I-III by both analyses and formed a distantly related outgroup, designated clade IV. Median number of pairwise whole genome-hqSNPs in clonal ETEC O6 outbreaks ranged from 0 to 5. Of the 40 isolates tested for antimicrobial susceptibility, 18 isolates were pansusceptible. Twenty-two isolates were resistant to at least one antibiotic, nine of which were multidrug resistant. Phenotypic antimicrobial resistance (AR) correlated with AR determinants in 22 isolates. Thirty-two isolates harbored both enterotoxin virulence genes while the remaining 8 isolates had only one of the two virulence genes. In summary, whole genome-hqSNP and core genome SNP analyses from this study revealed similar evolutionary relationships and an overall diversity of ETEC O6 isolates independent of time of isolation. Less than 5 pairwise hqSNPs between ETEC O6 isolates is circumstantially indicative of an outbreak cluster. Findings from this study will be a basis for quicker outbreak detection and control by efficient subtyping by WGS.


Assuntos
Escherichia coli Enterotoxigênica/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Antibacterianos/farmacologia , Biologia Computacional , DNA Bacteriano , Surtos de Doenças , Farmacorresistência Bacteriana/genética , Escherichia coli Enterotoxigênica/efeitos dos fármacos , Escherichia coli Enterotoxigênica/isolamento & purificação , Escherichia coli Enterotoxigênica/patogenicidade , Genoma Bacteriano , Humanos , Testes de Sensibilidade Microbiana , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Sorogrupo , Fatores de Virulência/genética
18.
N Engl J Med ; 377(21): 2036-2043, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29166238

RESUMO

BACKGROUND: In 2016, a multijurisdictional team investigated an outbreak of Shiga toxin-producing Escherichia coli (STEC) serogroup O121 and O26 infections linked to contaminated flour from a large domestic producer. METHODS: A case was defined as infection with an outbreak strain in which illness onset was between December 21, 2015, and September 5, 2016. To identify exposures associated with the outbreak, outbreak cases were compared with non-STEC enteric illness cases, matched according to age group, sex, and state of residence. Products suspected to be related to the outbreak were collected for STEC testing, and a common point of contamination was sought. Whole-genome sequencing was performed on isolates from clinical and food samples. RESULTS: A total of 56 cases were identified in 24 states. Univariable exact conditional logistic-regression models of 22 matched sets showed that infection was significantly associated with the use of one brand of flour (odds ratio, 21.04; 95% confidence interval [CI], 4.69 to 94.37) and with tasting unbaked homemade dough or batter (odds ratio, 36.02; 95% CI, 4.63 to 280.17). Laboratory testing isolated the outbreak strains from flour samples, and whole-genome sequencing revealed that the isolates from clinical and food samples were closely related to one another genetically. Trace-back investigation identified a common flour-production facility. CONCLUSIONS: This investigation implicated raw flour as the source of an outbreak of STEC infections. Although it is a low-moisture food, raw flour can be a vehicle for foodborne pathogens.


Assuntos
Surtos de Doenças , Infecções por Escherichia coli/epidemiologia , Farinha/intoxicação , Microbiologia de Alimentos , Doenças Transmitidas por Alimentos/epidemiologia , Escherichia coli Shiga Toxigênica , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Infecções por Escherichia coli/microbiologia , Feminino , Farinha/microbiologia , Humanos , Lactente , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Sorogrupo , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/isolamento & purificação , Inquéritos e Questionários , Estados Unidos/epidemiologia , Adulto Jovem
19.
Genome Announc ; 5(35)2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-28860257

RESUMO

Drug-resistant Shigella sonnei poses a clinical and public health challenge. We report here the high-quality draft whole-genome sequences of four outbreak-associated S. sonnei isolates; three were resistant to two or more antibiotics, and one was resistant to streptomycin only.

20.
Euro Surveill ; 22(23)2017 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-28662764

RESUMO

PulseNet International is a global network dedicated to laboratory-based surveillance for food-borne diseases. The network comprises the national and regional laboratory networks of Africa, Asia Pacific, Canada, Europe, Latin America and the Caribbean, the Middle East, and the United States. The PulseNet International vision is the standardised use of whole genome sequencing (WGS) to identify and subtype food-borne bacterial pathogens worldwide, replacing traditional methods to strengthen preparedness and response, reduce global social and economic disease burden, and save lives. To meet the needs of real-time surveillance, the PulseNet International network will standardise subtyping via WGS using whole genome multilocus sequence typing (wgMLST), which delivers sufficiently high resolution and epidemiological concordance, plus unambiguous nomenclature for the purposes of surveillance. Standardised protocols, validation studies, quality control programmes, database and nomenclature development, and training should support the implementation and decentralisation of WGS. Ideally, WGS data collected for surveillance purposes should be publicly available, in real time where possible, respecting data protection policies. WGS data are suitable for surveillance and outbreak purposes and for answering scientific questions pertaining to source attribution, antimicrobial resistance, transmission patterns, and virulence, which will further enable the protection and improvement of public health with respect to food-borne disease.


Assuntos
Bases de Dados Factuais , Surtos de Doenças , Microbiologia de Alimentos , Doenças Transmitidas por Alimentos/microbiologia , Genoma Bacteriano , Saúde Pública , Sequenciamento Completo do Genoma/normas , Bases de Dados Factuais/normas , Doenças Transmitidas por Alimentos/epidemiologia , Humanos , Laboratórios , Tipagem de Sequências Multilocus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA