Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 276: 130174, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33743425

RESUMO

Volatile organic compounds (VOC) and polycyclic aromatic hydrocarbons (PAH), emitted in the environment from a wide range of combustion sources, are hazardous to human health and considered important precursors of both primary and secondary particulate pollutants. In the present work, light hydrocarbons up to C9, as main components of combustion-derived VOC, and PAH produced in fuel-rich conditions of premixed ethylene flames were analyzed by implementing a molecular-beam time of flight mass spectrometer (MB-TOFMS), purposely built for on-line fast monitoring of the environmental impact of combustion systems. The reliability of the MB-TOFMS was preliminarily verified on a slightly-sooting flame, comparing the results with those obtained by batch sampling and gas chromatographic techniques. Electron ionization (EI) and multi-photon ionization (MPI) were used as MB-TOFMS sources and tested on combustion gases of a no-sooting premixed ethylene flame where VOC and PAH are present in traces not detectable with batch sampling and conventional analytical techniques. The mass identification accuracy was improved and guaranteed by systematically performing internal mass calibration, exploiting the formation of "in situ" clusters from combustion water in the molecular beam apparatus. Selective and sensitive monitoring of light hydrocarbons and PAH, derived from oxidation and pyrolysis reactions featuring combustion, was shown to be especially effective when using the MB-TOFMS equipped with MPI source. This technique showed to be effective also for the detection of radical species that are important for the risk assessment of aerosol and fundamental understanding of aerosol chemistry at a molecular level.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Espectrometria de Massas , Hidrocarbonetos Policíclicos Aromáticos/análise , Reprodutibilidade dos Testes
2.
Anal Chem ; 76(7): 2138-43, 2004 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15053681

RESUMO

The contribution of two- to seven-ring polycyclic aromatic hydrocarbons (PAH) and of larger aromatic structures contained in complex PAH-laden mixtures collected in flames was evaluated by fluorescence spectroscopy. A composition procedure of the fluorescence spectra of individual PAHs, analyzed by gas chromatography/mass spectrometry (GC/MS) was applied for the evaluation of their contribution to the fluorescence spectra of PAH-laden mixtures. In this way, it was possible to put in evidence the contribution to the total fluorescence spectrum of high molecular weight aromatic species present in the PAH-laden mixtures and not detectable by GC/MS. Qualitative and quantitative interpretation of synchronous and conventional fluorescence spectra of PAH-laden mixtures formed in combustion processes was proposed. The composition procedure was showed to be reliable in the UV-visible region for samples dissolved in cyclohexane solutions, but failed in the UV region when the solvent contained heavy atoms, as in the case of dichloromethane. However, the heavy-atom solvent effect was not sufficient to explain the depression of the UV fluorescence signal. Energy transfer interaction between fluorene and other fluorescing PAHs was suggested to be also responsible for this effect on the basis of fluorescence studies performed on single PAHs and their mixtures in cyclohexane, methanol, and dichloromethane.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA