Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(10): 107922, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37817939

RESUMO

Bile acid (BA) metabolism is a complex system that includes a wide variety of primary and secondary, as well as conjugated and unconjugated BAs that undergo continuous enterohepatic circulation (EHC). Alterations in both composition and dynamics of BAs have been associated with various diseases. However, a mechanistic understanding of the relationship between altered BA metabolism and related diseases is lacking. Computational modeling may support functional analyses of the physiological processes involved in the EHC of BAs along the gut-liver axis. In this study, we developed a physiologically based model of murine BA metabolism describing synthesis, hepatic and microbial transformations, systemic distribution, excretion, and EHC of BAs at the whole-body level. For model development, BA metabolism of specific pathogen-free (SPF) mice was characterized in vivo by measuring BA levels and composition in various organs, expression of transporters along the gut, and cecal microbiota composition. We found significantly different BA levels between male and female mice that could only be explained by adjusted expression of the hepatic enzymes and transporters in the model. Of note, this finding was in agreement with experimental observations. The model for SPF mice could also describe equivalent experimental data in germ-free mice by specifically switching off microbial activity in the intestine. The here presented model can therefore facilitate and guide functional analyses of BA metabolism in mice, e.g., the effect of pathophysiological alterations on BA metabolism and translation of results from mouse studies to a clinically relevant context through cross-species extrapolation.

2.
Immunity ; 56(6): 1220-1238.e7, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37130522

RESUMO

Early-life immune development is critical to long-term host health. However, the mechanisms that determine the pace of postnatal immune maturation are not fully resolved. Here, we analyzed mononuclear phagocytes (MNPs) in small intestinal Peyer's patches (PPs), the primary inductive site of intestinal immunity. Conventional type 1 and 2 dendritic cells (cDC1 and cDC2) and RORgt+ antigen-presenting cells (RORgt+ APC) exhibited significant age-dependent changes in subset composition, tissue distribution, and reduced cell maturation, subsequently resulting in a lack in CD4+ T cell priming during the postnatal period. Microbial cues contributed but could not fully explain the discrepancies in MNP maturation. Type I interferon (IFN) accelerated MNP maturation but IFN signaling did not represent the physiological stimulus. Instead, follicle-associated epithelium (FAE) M cell differentiation was required and sufficient to drive postweaning PP MNP maturation. Together, our results highlight the role of FAE M cell differentiation and MNP maturation in postnatal immune development.


Assuntos
Células M , Nódulos Linfáticos Agregados , Intestinos , Intestino Delgado , Diferenciação Celular , Mucosa Intestinal
3.
Cell Host Microbe ; 30(11): 1630-1645.e25, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36208631

RESUMO

Microbiome research needs comprehensive repositories of cultured bacteria from the intestine of mammalian hosts. We expanded the mouse intestinal bacterial collection (www.dsmz.de/miBC) to 212 strains, all publicly available and taxonomically described. This includes strain-level diversity, small-sized bacteria, and previously undescribed taxa (one family, 10 genera, and 39 species). This collection enabled metagenome-educated prediction of synthetic communities (SYNs) that capture key functional differences between microbiomes, notably identifying communities associated with either resistance or susceptibility to DSS-induced colitis. Additionally, nine species were used to amend the Oligo-Mouse Microbiota (OMM)12 model, yielding the OMM19.1 model. The added strains compensated for phenotype differences between OMM12 and specific pathogen-free mice, including body composition and immune cells in the intestine and associated lymphoid tissues. Ready-to-use OMM stocks are available for future studies. In conclusion, this work improves our knowledge of gut microbiota diversity in mice and enables functional studies via the modular use of isolates.


Assuntos
Microbioma Gastrointestinal , Microbiota , Camundongos , Animais , Microbioma Gastrointestinal/genética , Bactérias , Metagenoma , Intestinos , Modelos Animais de Doenças , Mamíferos/genética
4.
Environ Microbiol ; 24(9): 3861-3881, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35233904

RESUMO

Cultivation via classical agar plate (CAP) approaches is widely used to study microbial communities, but they are time-consuming. An alternative approach is the application of single-cell dispensing (SCD), which allows high-throughput, label-free sorting of microscopic particles. We aimed to develop a new anaerobic SCD workflow to cultivate human gut bacteria and compared it with CAP using faecal communities on three rich culture media. We found that the SCD approach significantly decreased the experimental time to obtain pure cultures from 17 ± 4 to 5 ± 0 days, while the isolate diversity and relative abundance coverage were comparable for both approaches. We further tested the total captured fraction by sequencing the sorted bacteria directly after growth as bulk biomass from 2400 dispensed single cells without downstream identification of individual strains. In this approach, the cultured fraction increased from 35.2% to 52.2% for SCD, highlighting the potential for deeper cultivation projects from single samples. SCD-based cultivation also captured species not detected by sequencing (16 ± 5 per sample, including seven novel taxa). From this work, 82 human gut bacterial species across five phyla (Actinobacteriota, Bacteroidota, Desulfobacterota, Firmicutes and Proteobacteria) and 24 families were obtained, including the first cultured member of 11 novel genera and 10 novel species that were fully characterized taxonomically.


Assuntos
Bactérias , Ágar , Anaerobiose , Meios de Cultura , Humanos , RNA Ribossômico 16S/genética
5.
Microbiome ; 10(1): 24, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115054

RESUMO

BACKGROUND: There is a growing interest in using gut commensal bacteria as "next generation" probiotics. However, this approach is still hampered by the fact that there are few or no strains available for specific species that are difficult to cultivate. Our objective was to adapt flow cytometry and cell sorting to be able to detect, separate, isolate, and cultivate new strains of commensal species from fecal material. We focused on the extremely oxygen sensitive (EOS) species Faecalibacterium prausnitzii and the under-represented, health-associated keystone species Christensenella minuta as proof-of-concept. RESULTS: A BD Influx® cell sorter was equipped with a glovebox that covered the sorting area. This box was flushed with nitrogen to deplete oxygen in the enclosure. Anaerobic conditions were maintained during the whole process, resulting in only minor viability loss during sorting and culture of unstained F. prausnitzii strains ATCC 27766, ATCC 27768, and DSM 17677. We then generated polyclonal antibodies against target species by immunizing rabbits with heat-inactivated bacteria. Two polyclonal antibodies were directed against F. prausnitzii type strains that belong to different phylogroups, whereas one was directed against C. minuta strain DSM 22607. The specificity of the antibodies was demonstrated by sorting and sequencing the stained bacterial fractions from fecal material. In addition, staining solutions including LIVE/DEAD™ BacLight™ Bacterial Viability staining and polyclonal antibodies did not severely impact bacterial viability while allowing discrimination between groups of strains. Finally, we combined these staining strategies as well as additional criteria based on bacterial shape for C. minuta and were able to detect, isolate, and cultivate new F. prausnitzii and C. minuta strains from healthy volunteer's fecal samples. CONCLUSIONS: Targeted cell-sorting under anaerobic conditions is a promising tool for the study of fecal microbiota. It gives the opportunity to quickly analyze microbial populations, and can be used to sort EOS and/or under-represented strains of interest using specific antibodies, thus opening new avenues for culture experiments. Video abstract.


Assuntos
Microbioma Gastrointestinal , Anaerobiose , Animais , Bactérias/metabolismo , Faecalibacterium prausnitzii , Citometria de Fluxo , Coelhos
6.
Cells ; 11(2)2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-35053298

RESUMO

A considerable percentage of the population is affected by alcoholic liver disease (ALD). It is characterized by inflammatory signals from the liver and other organs, such as the intestine. The NLR family pyrin domain containing 6 (NLRP6) inflammasome complex is one of the most important inflammatory mediators. The aim of this study was to evaluate a novel mouse model for ALD characterized by 8-week chronic-plus-binge ethanol administration and to investigate the role of NLRP6 inflammasome for intestinal homeostasis and ALD progression using Nlrp6-/- mice. We showed that chronic-plus-binge ethanol administration triggers hepatic steatosis, injury, and neutrophil infiltration. Furthermore, we discovered significant changes of intestinal microbial communities, including increased relative abundances of bacteria within the phyla Bacteroidota and Campilobacterota, as well as reduced Firmicutes. In this ALD model, inhibiting NLRP6 signaling had no effect on liver steatosis or damage, but had a minor impact on intestinal homeostasis via affecting intestinal epithelium function and gut microbiota. Surprisingly, Nlrp6 loss resulted in significantly decreased hepatic immune cell infiltration. As a result, our novel mouse model encompasses several aspects of human ALD, such as intestinal dysbiosis. Interfering with NLRP6 inflammasome activity reduced hepatic immune cell recruitment, indicating a disease-aggravating role of NLRP6 during ALD.


Assuntos
Transtorno da Compulsão Alimentar/metabolismo , Transtorno da Compulsão Alimentar/patologia , Progressão da Doença , Inflamassomos/metabolismo , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/patologia , Receptores de Superfície Celular/metabolismo , Consumo de Bebidas Alcoólicas , Animais , Transtorno da Compulsão Alimentar/microbiologia , Ceco/microbiologia , Doença Crônica , Modelos Animais de Doenças , Fígado Gorduroso/complicações , Fígado Gorduroso/patologia , Microbioma Gastrointestinal , Mucosa Intestinal/patologia , Fígado/lesões , Fígado/patologia , Hepatopatias Alcoólicas/microbiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos , Receptores de Superfície Celular/deficiência , Transdução de Sinais
7.
ISME Commun ; 1(1): 31, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37938227

RESUMO

16S rRNA gene amplicon sequencing is a popular approach for studying microbiomes. However, some basic concepts have still not been investigated comprehensively. We studied the occurrence of spurious sequences using defined microbial communities based on data either from the literature or generated in three sequencing facilities and analyzed via both operational taxonomic units (OTUs) and amplicon sequence variants (ASVs) approaches. OTU clustering and singleton removal, a commonly used approach, delivered approximately 50% (mock communities) to 80% (gnotobiotic mice) spurious taxa. The fraction of spurious taxa was generally lower based on ASV analysis, but varied depending on the gene region targeted and the barcoding system used. A relative abundance of 0.25% was found as an effective threshold below which the analysis of spurious taxa can be prevented to a large extent in both OTU- and ASV-based analysis approaches. Using this cutoff improved the reproducibility of analysis, i.e., variation in richness estimates was reduced by 38% compared with singleton filtering using six human fecal samples across seven sequencing runs. Beta-diversity analysis of human fecal communities was markedly affected by both the filtering strategy and the type of phylogenetic distances used for comparison, highlighting the importance of carefully analyzing data before drawing conclusions on microbiome changes. In summary, handling of artifact sequences during bioinformatic processing of 16S rRNA gene amplicon data requires careful attention to avoid the generation of misleading findings. We propose the concept of effective richness to facilitate the comparison of alpha-diversity across studies.

8.
Microb Ecol ; 78(2): 517-527, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30627762

RESUMO

The development of the gut microbiome is influenced by several factors. It is acquired during and after birth and involves both maternal and environmental factors as well as the genetic disposition of the offspring. However, it is unclear if the microbiome development is directly triggered by the mode of delivery and very early contact with the mother or mostly at later stages of initial development mainly by breast milk provided by the mother. To investigate to what extent the gut microbiome composition of the offspring is determined by the nursing mother, providing breast milk, compared to the birth mother during early development, a cross-fostering experiment involving two genetically different mouse lines was developed, being prone to be obese or lean, respectively. The microbiome of the colon was analyzed by high-throughput 16S rRNA gene sequencing, when the mice were 3 weeks old. The nursing mother affected both α- and ß-diversity of the offspring's gut microbiome and shaped its composition. Especially bacterial families directly transferred by breast milk, like Streptococcaceae, or families which are strongly influenced by the quality of the breast milk like Rikenellaceae, showed a strong response. The core microbiome transferred from the obese nursing mother showed a higher robustness in comparison to the microbiome transferred from the lean nursing mother. Overall, the nursing mother impacts the gut microbial composition of the offspring during early development and might play an important role for health and disease of the animals at later stages of life.


Assuntos
Bactérias/isolamento & purificação , Microbioma Gastrointestinal , Leite Humano/microbiologia , Obesidade/microbiologia , Magreza/microbiologia , Animais , Animais Endogâmicos , Animais não Endogâmicos , Bactérias/classificação , Bactérias/genética , DNA Bacteriano/genética , Feminino , Humanos , Masculino , Camundongos , Mães/estatística & dados numéricos , Linhagem , RNA Ribossômico 16S/genética
9.
PLoS One ; 12(12): e0188556, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29211803

RESUMO

We explored the assembly of intestinal microbiota in healthy male participants during the randomized crossover design of run-in (5 day) and experimental phases (21-day normoxic bed rest (NBR), hypoxic bed rest (HBR) and hypoxic ambulation (HAmb) in a strictly controlled laboratory environment, with balanced fluid and dietary intakes, controlled circadian rhythm, microbial ambiental burden and 24/7 medical surveillance. The fraction of inspired O2 (FiO2) and partial pressure of inspired O2 (PiO2) were 0.209 and 133.1 ± 0.3 mmHg for NBR and 0.141 ± 0.004 and 90.0 ± 0.4 mmHg for both hypoxic variants (HBR and HAmb; ~4000 m simulated altitude), respectively. A number of parameters linked to intestinal environment such as defecation frequency, intestinal electrical conductivity (IEC), sterol and polyphenol content and diversity, indole, aromaticity and spectral characteristics of dissolved organic matter (DOM) were measured (64 variables). The structure and diversity of bacterial microbial community was assessed using 16S rRNA amplicon sequencing. Inactivity negatively affected frequency of defecation and in combination with hypoxia increased IEC (p < 0.05). In contrast, sterol and polyphenol diversity and content, various characteristics of DOM and aromatic compounds, the structure and diversity of bacterial microbial community were not significantly affected over time. A new in-house PlanHab database was established to integrate all measured variables on host physiology, diet, experiment, immune and metabolic markers (n = 231). The observed progressive decrease in defecation frequency and concomitant increase in IEC suggested that the transition from healthy physiological state towards the developed symptoms of low magnitude obesity-related syndromes was dose dependent on the extent of time spent in inactivity and preceded or took place in absence of significant rearrangements in bacterial microbial community. Species B. thetaiotamicron, B. fragilis, B. dorei and other Bacteroides with reported relevance for dysbiotic medical conditions were significantly enriched in HBR, characterized with most severe inflammation symptoms, indicating a shift towards host mucin degradation and proinflammatory immune crosstalk.


Assuntos
Bactérias/classificação , Fenômenos Fisiológicos Bacterianos , Hipóxia/metabolismo , Bactérias/genética , Cromatografia Líquida de Alta Pressão , Estudos Cross-Over , Exercício Físico , Fezes/química , Voluntários Saudáveis , Humanos , Masculino , Projetos Piloto , RNA Ribossômico 16S/genética
10.
Front Physiol ; 8: 250, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28522975

RESUMO

We explored the assembly of intestinal microbiota in healthy male participants during the run-in (5 day) and experimental phases [21-day normoxic bed rest (NBR), hypoxic bedrest (HBR)], and hypoxic ambulation (HAmb) in a strictly controlled laboratory environment, balanced fluid, and dietary intakes, controlled circadian rhythm, microbial ambiental burden, and 24/7 medical surveillance. The fraction of inspired O2 (FiO2) and partial pressure of inspired O2 (PiO2) were 0.209 and 133.1 ± 0.3 mmHg for NBR and 0.141 ± 0.004 and 90.0 ± 0.4 mmHg for both hypoxic variants (HBR and HAmb; ~4,000 m simulated altitude), respectively. A number of parameters linked to intestinal transit spanning Bristol Stool Scale, defecation rates, zonulin, α1-antitrypsin, eosinophil derived neurotoxin, bile acids, reducing sugars, short chain fatty acids, total soluble organic carbon, water content, diet composition, and food intake were measured (167 variables). The abundance, structure, and diversity of butyrate producing microbial community were assessed using the two primary bacterial butyrate synthesis pathways, butyryl-CoA: acetate CoA-transferase (but) and butyrate kinase (buk) genes. Inactivity negatively affected fecal consistency and in combination with hypoxia aggravated the state of gut inflammation (p < 0.05). In contrast, gut permeability, various metabolic markers, the structure, diversity, and abundance of butyrate producing microbial community were not significantly affected. Rearrangements in the butyrate producing microbial community structure were explained by experimental setup (13.4%), experimentally structured metabolites (12.8%), and gut metabolite-immunological markers (11.9%), with 61.9% remaining unexplained. Many of the measured parameters were found to be correlated and were hence omitted from further analyses. The observed progressive increase in two immunological intestinal markers suggested that the transition from healthy physiological state toward the developed symptoms of low magnitude obesity-related syndromes was primarily driven by the onset of inactivity (lack of exercise in NBR) that were exacerbated by systemic hypoxia (HBR) and significantly alleviated by exercise, despite hypoxia (HAmb). Butyrate producing community in colon exhibited apparent resilience toward short-term modifications in host exercise or hypoxia. Progressive constipation (decreased intestinal motility) and increased local inflammation marker suggest that changes in microbial colonization and metabolism were taking place at the location of small intestine.

11.
mBio ; 6(4): e00975, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26199330

RESUMO

UNLABELLED: Sensing of and responding to environmental changes are of vital importance for microbial cells. Consequently, bacteria have evolved a plethora of signaling systems that usually sense biochemical cues either via direct ligand binding, thereby acting as "concentration sensors," or by responding to downstream effects on bacterial physiology, such as structural damage to the cell. Here, we describe a novel, alternative signaling mechanism that effectively implements a "flux sensor" to regulate antibiotic resistance. It relies on a sensory complex consisting of a histidine kinase and an ABC transporter, in which the transporter fulfills the dual role of both the sensor of the antibiotic and the mediator of resistance against it. Combining systems biological modeling with in vivo experimentation, we show that these systems in fact respond to changes in activity of individual resistance transporters rather than to changes in the antibiotic concentration. Our model shows that the cell thereby adjusts the rate of de novo transporter synthesis to precisely the level needed for protection. Such a flux-sensing mechanism may serve as a cost-efficient produce-to-demand strategy, controlling a widely conserved class of antibiotic resistance systems. IMPORTANCE: Bacteria have to be able to accurately perceive their environment to allow adaptation to changing conditions. This is usually accomplished by sensing the concentrations of beneficial or harmful substances or by measuring the effect of the prevailing conditions on the cell. Here we show the existence of a new way of sensing the environment, where the bacteria monitor the activity of an antibiotic resistance transporter. Such a "flux-sensing" mechanism allows the cell to detect its current capacity to deal with the antibiotic challenge and thus precisely respond to the need for more transporters. We propose that this is a cost-efficient way of regulating antibiotic resistance on demand.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Antibacterianos/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Farmacorresistência Bacteriana , Regulação Bacteriana da Expressão Gênica , Modelos Biológicos , Biologia de Sistemas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA