Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2018): 20231729, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38471548

RESUMO

Animals rely on a balance of personal and social information to decide when and where to move next in order to access a desired resource. The benefits from cueing on conspecifics to reduce uncertainty about resource availability can be rapidly overcome by the risks of within-group competition, often exacerbated toward low-ranked individuals. Being obligate soarers, relying on thermal updraughts to search for carcasses around which competition can be fierce, vultures represent ideal models to investigate the balance between personal and social information during foraging movements. Linking dominance hierarchy, social affinities and meteorological conditions to movement decisions of eight captive vultures, Gyps spp., released for free flights in natural soaring conditions, we found that they relied on social information (i.e. other vultures using/having used the thermals) to find the next thermal updraught, especially in unfavourable flight conditions. Low-ranked individuals were more likely to disregard social cues when deciding where to go next, possibly to minimize the competitive risk of social aggregation. These results exemplify the architecture of decision-making during flight in social birds. It suggests that the environmental context, the context of risk and the social system as a whole calibrate the balance between personal and social information use.


Assuntos
Falconiformes , Humanos , Animais , Aves , Predomínio Social
2.
PLoS One ; 17(8): e0272348, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35951498

RESUMO

Determining trophic habits of predator communities is essential to measure interspecific interactions and response to environmental fluctuations. South American fur seals, Arctocephalus australis (SAFS) and sea lions Otaria byronia (SASL), coexist along the coasts of Peru. Recently, ocean warming events (2014-2017) that can decrease and impoverish prey biomass have occurred in the Peruvian Humboldt Current System. In this context, our aim was to assess the effect of warming events on long-term inter- and intra-specific niche segregation. We collected whisker from SAFS (55 females and 21 males) and SASL (14 females and 22 males) in Punta San Juan, Peru. We used δ13C and δ15N values serially archived in otariid whiskers to construct a monthly time series for 2005-2019. From the same period we used sea level anomaly records to determine shifts in the predominant oceanographic conditions using a change point analysis. Ellipse areas (SIBER) estimated niche width of species-sex groups and their overlap. We detected a shift in the environmental conditions marking two distinct periods (P1: January 2005-October 2013; P2: November 2013-December 2019). Reduction in δ15N in all groups during P2 suggests impoverished baseline values with bottom-up effects, a shift towards consuming lower trophic level prey, or both. Reduced overlap between all groups in P2 lends support of a more redundant assemblage during the colder P1 to a more trophically segregated assemblage during warmer P2. SASL females show the largest variation in response to the warming scenario (P2), reducing both ellipse area and δ15N mean values. Plasticity to adapt to changing environments and feeding on a more available food source without fishing pressure can be more advantageous for female SASL, albeit temporary trophic bottom-up effects. This helps explain larger population size of SASL in Peru, in contrast to the smaller and declining SAFS population.


Assuntos
Otárias , Leões-Marinhos , Animais , Feminino , Otárias/fisiologia , Masculino , Oceanos e Mares , Peru , Leões-Marinhos/fisiologia
3.
Environ Sci Technol ; 55(23): 15754-15765, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34797644

RESUMO

Climate change is expected to affect marine mercury (Hg) biogeochemistry and biomagnification. Recent modeling work suggested that ocean warming increases methylmercury (MeHg) levels in fish. Here, we studied the influence of El Niño Southern Oscillations (ENSO) on Hg concentrations and stable isotopes in time series of seabird blood from the Peruvian upwelling and oxygen minimum zone. Between 2009 and 2016, La Niña (2011) and El Niño conditions (2015-2016) were accompanied by sea surface temperature anomalies up to 3 °C, oxycline depth change (20-100 m), and strong primary production gradients. Seabird Hg levels were stable and did not co-vary significantly with oceanographic parameters, nor with anchovy biomass, the primary dietary source to seabirds (90%). In contrast, seabird Δ199Hg, proxy for marine photochemical MeHg breakdown, and δ15N showed strong interannual variability (up to 0.8 and 3‰, respectively) and sharply decreased during El Niño. We suggest that lower Δ199Hg during El Niño represents reduced MeHg photodegradation due to the deepening of the oxycline. This process was balanced by equally reduced Hg methylation due to reduced productivity, carbon export, and remineralization. The non-dependence of seabird MeHg levels on strong ENSO variability suggests that marine predator MeHg levels may not be as sensitive to climate change as is currently thought.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Animais , Aves , El Niño Oscilação Sul , Monitoramento Ambiental , Mercúrio/análise , Peru , Poluentes Químicos da Água/análise
4.
Mar Environ Res ; 169: 105349, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34000662

RESUMO

Sympatric species evolve mechanisms to avoid competition and coexist. In the Humboldt Current System (HCS), populations of South American sea lions (SASL, Otaria byronia) and South American fur seals (SAFS, Arctocephalus australis) fluctuate mostly due to ENSO events and prey availability. We evaluate population trajectories of Peruvian sympatric otariids and discuss mechanisms for competition and/or resource limitation. For this purpose, we analyzed population trajectories of SASL and SAFS in a sympatric breeding site in Punta San Juan, Peru between 2001 and 2019. Wavelet analysis was used to extract trends and derivatives to estimate rates and turning points. Age-class proportions and biomass times series were constructed from weekly counts and evaluated. Both populations show a growth phase and subsequent decline. SAFS started to decline ~2.25 years before and at a rate 1.5 times faster than SASL. Decrease in juvenile age-class suggests that resource limitation is the main contributing factor for current population decline.


Assuntos
Otárias , Leões-Marinhos , Animais , Peru , Simpatria
5.
Sci Rep ; 7(1): 7364, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28779100

RESUMO

Seabirds are known to concentrate on prey patches or at predators aggregations standing for potential feeding opportunities. They may search for prey using olfaction or by detecting visually feeding con-specifics and sub-surface predators, or even boats. Thus, they might form a foraging network. We hypothesized that conditionally to the existence of a foraging network, the visual detection ability of seabirds should have a bearing on their medium-scale distribution at sea. Using a fishing-boat radar to catch the instantaneous distribution of seabirds groups within 30 km around the vessel, we conducted a spatial clustering of the seabird-echoes. We found 7,657 clusters (i.e. aggregations of echoes), lasting less than 15 minutes and measuring 9.2 km in maximum length (median). Distances between seabirds groups within clusters showed little variation (median: 2.1 km; CV: 0.5), while area varied largely (median: 21.9 km2; CV: 0.8). Given existing data on seabirds' reaction distances to boats or other marine predators, we suggest that these structures may represent active foraging sequences of seabirds spreading themselves in space such as to possibly cue on each others. These seabird clusters were not previously described and are size compatible with the existence of a foraging network.


Assuntos
Aves , Pesqueiros , Comportamento Predatório , Animais , Modelos Teóricos , Radar
6.
Sci Rep ; 6: 30972, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27492779

RESUMO

Most seabirds are very noisy at their breeding colonies, when aggregated in high densities. Calls are used for individual recognition and also emitted during agonistic interactions. When at sea, many seabirds aggregate over patchily distributed resources and may benefit from foraging in groups. Because these aggregations are so common, it raises the question of whether seabirds use acoustic communication when foraging at sea? We deployed video-cameras with built in microphones on 36 Cape gannets (Morus capensis) during the breeding season of 2010-2011 at Bird Island (Algoa Bay, South Africa) to study their foraging behaviour and vocal activity at sea. Group formation was derived from the camera footage. During ~42 h, calls were recorded on 72 occasions from 16 birds. Vocalization exclusively took place in the presence of conspecifics, and mostly in feeding aggregations (81% of the vocalizations). From the observation of the behaviours of birds associated with the emission of calls, we suggest that the calls were emitted to avoid collisions between birds. Our observations show that at least some seabirds use acoustic communication when foraging at sea. These findings open up new perspectives for research on seabirds foraging ecology and their interactions at sea.


Assuntos
Aves/fisiologia , Comportamento Alimentar , Vocalização Animal , Animais , Cruzamento , Ecologia , Ecossistema , Oceanos e Mares , África do Sul
7.
J Anim Ecol ; 85(1): 157-67, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26768335

RESUMO

Prey aggregations, such as fish schools, attract numerous predators. This typically leads to the formation of multispecific groups of predators. These aggregations can be seen both as a place of increased competition and as a place of possible facilitation between predators. Consequently, the functional role of such predator-prey aggregation is uncertain, and its effect on individual feeding success is virtually unknown. Using underwater film footage of different predators feeding on fish schools during the sardine run in South Africa, we directly measured the in situ feeding success of individual Cape gannets Morus capensis in different foraging situations. We determined the types of Cape gannet attacks (direct plunge dive or plunge dive followed by underwater pursuit) and we measured the occurrences and timing of attacks from the different species (mostly Cape gannets and long-beaked common dolphins Delphinus capensis). We also estimated the size of the targeted fish schools. These observations were complemented with a simulation model to evaluate the cumulative effect of successive predator attacks on the prey aggregation structure. The probability to capture a fish in one feeding attempt by Cape gannets averaged 0·28. It was lower when gannets engaged in underwater prey pursuit after the plunge compared to direct plunge (0·13 vs. 0·36). We found no effect of the number of prey on gannets' feeding success. However, the timing and frequency of attacks influenced strongly and positively the feeding success of individuals. The probability to capture a fish was the lowest (0·16) when no attack occurred in the few seconds (1-15 s) prior to a dive and the highest (˜0·4, i.e. more than twice) when one or two attacks occurred during this time window. The simulation model showed that a prey aggregation disorganized just after an attack and that the maximum of disturbance was obtained a few seconds after the initiation of the successive attacks. Our study suggests that, in multispecies predator assemblages, the cumulative effect (through disorganization of school cohesiveness) of the multiple species attacking a prey aggregation may increase the feeding success of each individual. Therefore, facilitation between predators is likely to overcome competition in these multispecific assemblages.


Assuntos
Aves/fisiologia , Peixes/fisiologia , Cadeia Alimentar , Comportamento Predatório , Comportamento Social , Animais , Golfinhos/fisiologia , África do Sul
8.
PLoS One ; 10(11): e0142623, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26581108

RESUMO

How animals respond to varying environmental conditions is fundamental to ecology and is a question that has gained impetus due to mounting evidence indicating negative effects of global change on biodiversity. Behavioural plasticity is one mechanism that enables individuals and species to deal with environmental changes, yet for many taxa information on behavioural parameters and their capacity to change are lacking or restricted to certain periods within the annual cycle. This is particularly true for seabirds where year-round behavioural information is intrinsically challenging to acquire due to their reliance on the marine environment where they are difficult to study. Using data from over 13,000 foraging trips throughout the annual cycle, acquired using new-generation automated VHF technology, we described sex-specific, year-round activity budgets in Cape gannets. Using these data we investigated the role of weather (wind and rain) on foraging activity and time allocated to nest attendance. Foraging activity was clearly influenced by wind speed, wind direction and rainfall during and outside the breeding season. Generally, strong wind conditions throughout the year resulted in relatively short foraging trips. Birds spent longer periods foraging when rainfall was moderate. Nest attendance, which was sex-specific outside of the breeding season, was also influenced by meteorological conditions. Large amounts of rainfall (> 2.5 mm per hour) and strong winds (> 13 m s-1) resulted in gannets spending shorter amounts of time at their nests. We discuss these findings in terms of life history strategies and implications for the use of seabirds as bio-indicators.


Assuntos
Biodiversidade , Aves/fisiologia , Ecologia , Voo Animal/fisiologia , Animais , Comportamento Alimentar , Oceanos e Mares , Estações do Ano , Tempo (Meteorologia) , Vento
9.
Mov Ecol ; 3: 27, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26430513

RESUMO

BACKGROUND: Climate-driven environmental change in the North Pacific has been well documented, with marked effects on the habitat and foraging behavior of marine predators. However, the mechanistic linkages connecting climate-driven changes in behavior to predator populations are not well understood. We evaluated the effects of climate-driven environmental variability on the reproductive success and foraging behavior of Laysan and Black-footed albatrosses breeding in the Northwest Hawaiian Islands during both brooding and incubating periods. We assessed foraging trip metrics and reproductive success using data collected from 2002-2012 and 1981-2012, respectively, relative to variability in the location of the Transition Zone Chlorophyll Front (TZCF, an important foraging region for albatrosses), sea surface temperature (SST), Multivariate ENSO Index (MEI), and the North Pacific Gyre Oscillation index (NPGO). RESULTS: Foraging behavior for both species was influenced by climatic and oceanographic factors. While brooding chicks, both species traveled farther during La Niña conditions, when NPGO was high and when the TZCF was farther north (farther from the breeding site). Models showed that reproductive success for both species showed similar trends, correlating negatively with conditions observed during La Niña events (low MEI, high SST, high NPGO, increased distance to TZCF), but models for Laysan albatrosses explained a higher proportion of the variation. Spatial correlations of Laysan albatross reproductive success and SST anomalies highlighted strong negative correlations (>95 %) between habitat use and SST. Higher trip distance and/or duration during brooding were associated with decreased reproductive success. CONCLUSIONS: Our findings suggest that during adverse conditions (La Niña conditions, high NPGO, northward displacement of the TZCF), both Laysan and Black-footed albatrosses took longer foraging trips and/or traveled farther during brooding, likely resulting in a lower reproductive success due to increased energetic costs. Our results link climate variability with both albatross behavior and reproductive success, information that is critical for predicting how albatross populations will respond to future climate change.

10.
Mov Ecol ; 3: 34, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26421151

RESUMO

BACKGROUND: The spatiotemporal distribution of animals is dependent on a suite of factors, including the distribution of resources, interactions within and between species, physiological limitations, and requirements for reproduction, dispersal, or migration. During breeding, reproductive constraints play a major role in the distribution and behavior of central place foragers, such as pelagic seabirds. We examined the foraging behavior and marine habitat selection of Laysan (Phoebastria immutabilis) and black-footed (P. nigripes) albatrosses throughout their eight month breeding cycle at Tern Island, Northwest Hawaiian Islands to evaluate how variable constraints of breeding influenced habitat availability and foraging decisions. We used satellite tracking and light-based geolocation to determine foraging locations of individuals, and applied a biologically realistic null usage model to generate control locations and model habitat preference under a case-control design. Remotely sensed oceanographic data were used to characterize albatross habitats in the North Pacific. RESULTS: Individuals of both species ranged significantly farther and for longer durations during incubation and chick-rearing compared to the brooding period. Interspecific segregation of core foraging areas was observed during incubation and chick-rearing, but not during brooding. At-sea activity patterns were most similar between species during brooding; neither species altered foraging effort to compensate for presumed low prey availability and high energy demands during this stage. Habitat selection during long-ranging movements was most strongly associated with sea surface temperature for both species, with a preference for cooler ocean temperatures compared to overall availability. During brooding, lower explanatory power of habitat models was likely related to the narrow range of ocean temperatures available for selection. CONCLUSIONS: Laysan and black-footed albatrosses differ from other albatross species in that they breed in an oligotrophic marine environment. During incubation and chick-rearing, they travel to cooler, more productive waters, but are restricted to the low-productivity environment near the colony during brooding, when energy requirements are greatest. Compared to other albatross species, Laysan and black-footed albatrosses spend a greater proportion of time in flight when foraging, especially during the brooding period; this strategy may be adaptive for locating dispersed prey in an oligotrophic environment.

11.
PLoS One ; 9(2): e88424, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24523892

RESUMO

The study of ecological and behavioral processes has been revolutionized in the last two decades with the rapid development of biologging-science. Recently, using image-capturing devices, some pilot studies demonstrated the potential of understanding marine vertebrate movement patterns in relation to their proximate, as opposed to remote sensed environmental contexts. Here, using miniaturized video cameras and GPS tracking recorders simultaneously, we show for the first time that information on the immediate visual surroundings of a foraging seabird, the Cape gannet, is fundamental in understanding the origins of its movement patterns. We found that movement patterns were related to specific stimuli which were mostly other predators such as gannets, dolphins or fishing boats. Contrary to a widely accepted idea, our data suggest that foraging seabirds are not directly looking for prey. Instead, they search for indicators of the presence of prey, the latter being targeted at the very last moment and at a very small scale. We demonstrate that movement patterns of foraging seabirds can be heavily driven by processes unobservable with conventional methodology. Except perhaps for large scale processes, local-enhancement seems to be the only ruling mechanism; this has profounds implications for ecosystem-based management of marine areas.


Assuntos
Aves/fisiologia , Meio Ambiente , Comportamento Predatório , Gravação em Vídeo , Animais , Comportamento Animal , Golfinhos , Ecologia , Ecossistema , Comportamento Alimentar , África do Sul
12.
PLoS One ; 9(12): e116544, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25551620

RESUMO

During breeding, animal behaviour is particularly sensitive to environmental and food resource availability. Additionally, factors such as sex, body condition, and offspring developmental stage can influence behaviour. Amongst seabirds, behaviour is generally predictably affected by local foraging conditions and has therefore been suggested as a potentially useful proxy to indicate prey state. However, besides prey availability and distribution, a range of other variables also influence seabird behavior, and these need to be accounted for to increase the signal-to-noise ratio when assessing specific characteristics of the environment based on behavioural attributes. The aim of this study was to use continuous, fine-scale time-activity budget data from a pelagic seabird (Cape gannet, Morus capensis) to determine the influence of intrinsic (sex and body condition) and extrinsic (offspring and time) variables on parent behaviour during breeding. Foraging trip duration and chick provisioning rates were clearly sex-specific and associated with chick developmental stage. Females made fewer, longer foraging trips and spent less time at the nest during chick provisioning. These sex-specific differences became increasingly apparent with chick development. Additionally, parents in better body condition spent longer periods at their nests and those which returned later in the day had longer overall nest attendance bouts. Using recent technological advances, this study provides new insights into the foraging behaviour of breeding seabirds, particularly during the post-guarding phase. The biparental strategy of chick provisioning revealed in this study appears to be an example where the costs of egg development to the female are balanced by paternal-dominated chick provisioning particularly as the chick nears fledging.


Assuntos
Comportamento Animal , Aves/fisiologia , Animais , Aves/anatomia & histologia , Tamanho Corporal , Cruzamento , Comportamento Alimentar , Feminino , Masculino , Comportamento de Nidação , Fatores Sexuais , Comportamento Sexual Animal , África do Sul , Fatores de Tempo
13.
PLoS One ; 8(2): e56229, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23437096

RESUMO

Thyroid hormones (TH) are known to stimulate in vitro oxygen consumption of tissues in mammals and birds. Hence, in many laboratory studies a positive relationship between TH concentrations and basal metabolic rate (BMR) has been demonstrated whereas evidence from species in the wild is scarce. Even though basal and field metabolic rates (FMR) are often thought to be intrinsically linked it is still unknown whether a relationship between TH and FMR exists. Here we determine the relationship between the primary thyroid hormone triiodothyronine (T3) with both BMR and FMR in a wild bird species, the black-legged kittiwake (Rissa tridactyla). As predicted we found a strong and positive relationship between plasma concentrations of T3 and both BMR and mass-independent BMR with coefficients of determination ranging from 0.36 to 0.60. In contrast there was no association of T3 levels with either whole-body or mass-independent FMR (R(2) =0.06 and 0.02, respectively). In accordance with in vitro studies our data suggests that TH play an important role in modulating BMR and may serve as a proxy for basal metabolism in wild birds. However, the lack of a relationship between TH and FMR indicates that levels of physical activity in kittiwakes are largely independent of TH concentrations and support recent studies that cast doubt on a direct linkage between BMR and FMR.


Assuntos
Animais Selvagens/metabolismo , Metabolismo Basal/fisiologia , Charadriiformes/metabolismo , Hormônios Tireóideos/metabolismo , Animais , Animais Selvagens/sangue , Peso Corporal , Charadriiformes/sangue , Feminino , Masculino , Noruega , Tri-Iodotironina/sangue
14.
J Anim Ecol ; 81(2): 341-51, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22007680

RESUMO

1. The assessment of species extinction risk has been well established for some time now. Assessing the potential for recovery in endangered species is however much more challenging, because complementary approaches are required to detect reliable signals of positive trends. 2. This study combines genetics, demography and behavioural data at three different time-scales to assess historical and recent population changes and evidence of reproductive synchrony in a small population of olive ridley sea turtle Lepidochelys olivacea. Lepidochelys is considered as the most extraordinary example of reproductive synchrony in reptiles, yet to date, it has only been reported in large populations. 3. Using Bayesian coalescent-based models on microsatellite nuclear DNA variability, we demonstrate that effective population size in olive ridleys nesting in French Guiana has dramatically declined by 99% over the last 20 centuries. This low current population size is further illustrated by the absence of genetic mitochondrial DNA diversity in the present nesting population. Yet, monitoring of nesting sites in French Guiana suggests a possible recovery of the population over the last decade. 4. Satellite telemetry shows that over the first 14 days of their 28-days inter-nesting interval, i.e. when eggs maturation is likely to occur, gravid females disperse over the continental shelf. They then gather together with a striking spatiotemporal consistency close to the nesting site, where they later emerge for their second nesting event. 5. Our results therefore suggest that reproductive synchrony also occurs in small populations. Olive ridleys may ensure this synchrony by adjusting the duration of the second half of their inter-nesting interval prior to landing, possibly through social mediation. 6. Such reproductive synchrony may be related to the maintenance of some species-specific strategy despite former collapse and may contribute to the present population recovery. The gregarious behaviour of reproductive individuals close to shore where human-induced perturbations occur is however a cause for conservation concern for this still poorly known species.


Assuntos
Variação Genética , Comportamento de Nidação , Tartarugas/fisiologia , Animais , Teorema de Bayes , Núcleo Celular/genética , Citocromos b/genética , DNA Mitocondrial/genética , Feminino , Guiana Francesa , Repetições de Microssatélites , Dados de Sequência Molecular , Movimento , Dinâmica Populacional , Tecnologia de Sensoriamento Remoto , Tartarugas/genética
15.
Proc Biol Sci ; 278(1722): 3191-200, 2011 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-21429921

RESUMO

Fisheries bycatch is a recognized threat to marine megafauna. Addressing bycatch of pelagic species however is challenging owing to the dynamic nature of marine environments and vagility of these organisms. In order to assess the potential for species to overlap with fisheries, we propose applying dynamic habitat models to determine relative probabilities of species occurrence for specific oceanographic conditions. We demonstrate this approach by modelling habitats for Laysan (Phoebastria immutabilis) and black-footed albatrosses (Phoebastria nigripes) using telemetry data and relating their occurrence probabilities to observations of Hawaii-based longline fisheries in 1997-2000. We found that modelled habitat preference probabilities of black-footed albatrosses were high within some areas of the fishing range of the Hawaiian fleet and such preferences were important in explaining bycatch occurrence. Conversely, modelled habitats of Laysan albatrosses overlapped little with Hawaii-based longline fisheries and did little to explain the bycatch of this species. Estimated patterns of albatross habitat overlap with the Hawaiian fleet corresponded to bycatch observations: black-footed albatrosses were more frequently caught in this fishery despite being 10 times less abundant than Laysan albatrosses. This case study demonstrates that dynamic habitat models based on telemetry data may help to project interactions with pelagic animals relative to environmental features and that such an approach can serve as a tool to guide conservation and management decisions.


Assuntos
Aves/fisiologia , Ecossistema , Pesqueiros/estatística & dados numéricos , Modelos Biológicos , Animais , Simulação por Computador , Conservação dos Recursos Naturais/métodos , Pesqueiros/métodos , Mortalidade , Oceano Pacífico , Dinâmica Populacional , Especificidade da Espécie , Telemetria
16.
PLoS One ; 4(3): e4711, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19262755

RESUMO

Animal tracking is a growing field in ecology and previous work has shown that simple speed filtering of tracking data is not sufficient and that improvement of tracking location estimates are possible. To date, this has required methods that are complicated and often time-consuming (state-space models), resulting in limited application of this technique and the potential for analysis errors due to poor understanding of the fundamental framework behind the approach. We describe and test an alternative and intuitive approach consisting of bootstrapping random walks biased by forward particles. The model uses recorded data accuracy estimates, and can assimilate other sources of data such as sea-surface temperature, bathymetry and/or physical boundaries. We tested our model using ARGOS and geolocation tracks of elephant seals that also carried GPS tags in addition to PTTs, enabling true validation. Among pinnipeds, elephant seals are extreme divers that spend little time at the surface, which considerably impact the quality of both ARGOS and light-based geolocation tracks. Despite such low overall quality tracks, our model provided location estimates within 4.0, 5.5 and 12.0 km of true location 50% of the time, and within 9, 10.5 and 20.0 km 90% of the time, for above, equal or below average elephant seal ARGOS track qualities, respectively. With geolocation data, 50% of errors were less than 104.8 km (<0.94 degrees), and 90% were less than 199.8 km (<1.80 degrees). Larger errors were due to lack of sea-surface temperature gradients. In addition we show that our model is flexible enough to solve the obstacle avoidance problem by assimilating high resolution coastline data. This reduced the number of invalid on-land location by almost an order of magnitude. The method is intuitive, flexible and efficient, promising extensive utilization in future research.


Assuntos
Modelos Biológicos , Movimento , Focas Verdadeiras , Animais , Métodos
17.
J Anim Ecol ; 78(3): 513-23, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19040681

RESUMO

1. The at-sea behaviour of marine predators is often described based on changes in behavioural states, such as transit, searching, and feeding. However, to distinguish between these behaviours, it is necessary to know the actual functions of the behaviours recorded. Specifically, to understand the foraging behaviour of marine predators, it is necessary to measure prey consumption. Therefore, the at-sea feeding behaviour of northern elephant seals (N = 13) was examined using satellite transmitters, time-depth recorders, and stomach temperature recorders. In addition, stomach temperature telemetry allowed for the validation of indirect measures of feeding behaviour used for marine predators, including decreases in transit rate and changes in dive shape. 2. Feeding data were recorded for the early phase of the migration (2.2-21 days). The first feeding events occurred shortly after animals departed (4.0 +/- 1.5 h) and close to the rookery (58.6 +/- 21.9 km), but these feedings were followed by extended periods without prey consumption (14.5 +/- 2.5 h). Continuous (bout) feeding did not occur until on average 7.5 +/- 1.8 days after the females left the rookery. Females showed significant differences in the feeding rate while feeding in a bout (1.3-2.1 feeding events hour(-1)). 3. There was a significant negative relationship between interpolated transit rate and feeding events (r(2) = 0.62, P < 0.01). Feeding, which was associated with all dive types, occurred most often during the foraging type dive shape (74.2%). Finally, successful feeding only occurred between 18-24% of the time when females displayed the foraging type dive shape suggesting that the use of dive shape alone, while indicative of behaviours associated with foraging (searching and catching prey) overestimates actual feeding behaviour. 4. This study showed females not only feed extensively during the early migration, but there was individual variation in both foraging locations and foraging success. In addition, by combining direct and indirect measures of feeding, this study has provided support for the use of foraging indicators in marine predators.


Assuntos
Comportamento Alimentar/fisiologia , Focas Verdadeiras/fisiologia , Animais , Mergulho , Feminino , Masculino , Caracteres Sexuais , Astronave
18.
PLoS One ; 3(12): e4016, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19107200

RESUMO

Among the varied adaptations for avian flight, the morphological traits allowing large-bodied albatrosses to capitalize on wind and wave energy for efficient long-distance flight are unparalleled. Consequently, the biogeographic distribution of most albatrosses is limited to the windiest oceanic regions on earth; however, exceptions exist. Species breeding in the North and Central Pacific Ocean (Phoebastria spp.) inhabit regions of lower wind speed and wave height than southern hemisphere genera, and have large intrageneric variation in body size and aerodynamic performance. Here, we test the hypothesis that regional wind and wave regimes explain observed differences in Phoebastria albatross morphology and we compare their aerodynamic performance to representatives from the other three genera of this globally distributed avian family. In the North and Central Pacific, two species (short-tailed P. albatrus and waved P. irrorata) are markedly larger, yet have the smallest breeding ranges near highly productive coastal upwelling systems. Short-tailed albatrosses, however, have 60% higher wing loading (weight per area of lift) compared to waved albatrosses. Indeed, calculated aerodynamic performance of waved albatrosses, the only tropical albatross species, is more similar to those of their smaller congeners (black-footed P. nigripes and Laysan P. immutabilis), which have relatively low wing loading and much larger foraging ranges that include central oceanic gyres of relatively low productivity. Globally, the aerodynamic performance of short-tailed and waved albatrosses are most anomalous for their body sizes, yet consistent with wind regimes within their breeding season foraging ranges. Our results are the first to integrate global wind and wave patterns with albatross aerodynamics, thereby identifying morphological specialization that may explain limited breeding ranges of two endangered albatross species. These results are further relevant to understanding past and potentially predicting future distributional limits of albatrosses globally, particularly with respect to climate change effects on basin-scale and regional wind fields.


Assuntos
Aves/anatomia & histologia , Aves/fisiologia , Voo Animal/fisiologia , Ondas de Maré , Suporte de Carga/fisiologia , Vento , Adaptação Biológica/fisiologia , Animais , Extinção Biológica , Geografia , Reprodução/fisiologia , Especificidade da Espécie , Asas de Animais/fisiologia
19.
J Exp Biol ; 210(Pt 6): 935-45, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17337706

RESUMO

Quantifying spatial and temporal patterns of prey searching is of primary importance for understanding animals' critical habitat and foraging specialization. In patchy environments, animals forage by exhibiting movement patterns consisting of area-restricted searching (ARS) at various scales. Here, we present a new method, the fractal landscape method, which describes the peaks and valleys of fractal dimension along the animal path. We describe and test the method on simulated tracks, and quantify the effect of track inaccuracies. We show that the ARS zones correspond to the peaks from this fractal landscape and that the method is near error-free when analyzing high-resolution tracks, such as those obtained using the Global Positioning System (GPS). When we used tracks of lower resolution, such as those obtained with the Argos system, 9.6-16.3% of ARS were not identified, and 1-25% of the ARS were found erroneously. The later type of error can be partially flagged and corrected. In addition, track inaccuracies erroneously increased the measured ARS size by a factor of 1.2 to 2.2. Regardless, the majority of the times and locations were correctly flagged as being in or out of ARS (from 83.8 to 89.5% depending on track quality). The method provides a significant new tool for studies of animals' foraging behavior and habitat selection, because it provides a method to precisely quantify each ARS separately, which is not possible with existing methods.


Assuntos
Comportamento Apetitivo/fisiologia , Fractais , Algoritmos , Animais , Aves/fisiologia , Simulação por Computador , Focas Verdadeiras/fisiologia
20.
Proc Natl Acad Sci U S A ; 103(34): 12799-802, 2006 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-16908846

RESUMO

Electronic tracking tags have revolutionized our understanding of broad-scale movements and habitat use of highly mobile marine animals, but a large gap in our knowledge still remains for a wide range of small species. Here, we report the extraordinary transequatorial postbreeding migrations of a small seabird, the sooty shearwater, obtained with miniature archival tags that log data for estimating position, dive depth, and ambient temperature. Tracks (262+/-23 days) reveal that shearwaters fly across the entire Pacific Ocean in a figure-eight pattern while traveling 64,037+/-9,779 km roundtrip, the longest animal migration ever recorded electronically. Each shearwater made a prolonged stopover in one of three discrete regions off Japan, Alaska, or California before returning to New Zealand through a relatively narrow corridor in the central Pacific Ocean. Transit rates as high as 910+/-186 km.day-1 were recorded, and shearwaters accessed prey resources in both the Northern and Southern Hemisphere's most productive waters from the surface to 68.2 m depth. Our results indicate that sooty shearwaters integrate oceanic resources throughout the Pacific Basin on a yearly scale. Sooty shearwater populations today are declining, and because they operate on a global scale, they may serve as an important indicator of climate change and ocean health.


Assuntos
Migração Animal/fisiologia , Aves/fisiologia , Estações do Ano , Sistemas de Identificação Animal , Animais , Oceano Pacífico , Chuva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA