Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
J Biol Chem ; 289(40): 27418-31, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25135640

RESUMO

Structural maintenance of chromosome (SMC) proteins are key organizers of chromosome architecture and are essential for genome integrity. They act by binding to chromatin and connecting distinct parts of chromosomes together. Interestingly, their potential role in providing connections between chromatin and the mitotic spindle has not been explored. Here, we show that yeast SMC proteins bind directly to microtubules and can provide a functional link between microtubules and DNA. We mapped the microtubule-binding region of Smc5 and generated a mutant with impaired microtubule binding activity. This mutant is viable in yeast but exhibited a cold-specific conditional lethality associated with mitotic arrest, aberrant spindle structures, and chromosome segregation defects. In an in vitro reconstitution assay, this Smc5 mutant also showed a compromised ability to protect microtubules from cold-induced depolymerization. Collectively, these findings demonstrate that SMC proteins can bind to and stabilize microtubules and that SMC-microtubule interactions are essential to establish a robust system to maintain genome integrity.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Instabilidade Genômica , Microtúbulos/química , Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Genoma Fúngico , Microtúbulos/genética , Ligação Proteica , Estabilidade Proteica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
3.
FEBS Lett ; 588(14): 2315-20, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24859087

RESUMO

The kinesin-13 family of microtubule depolymerases is a major regulator of microtubule dynamics. RNA interference-induced knockdown studies have highlighted their importance in many cell division processes including spindle assembly and chromosome segregation. Since microtubule turnovers and most mitotic events are relatively rapid (in minutes or seconds), developing tools that offer faster control over protein functions is therefore essential to more effectively interrogate kinesin-13 activities in living cells. Here, we report the identification and characterization of a selective allosteric kinesin-13 inhibitor, DHTP. Using high resolution microscopy, we show that DHTP is cell permeable and can modulate microtubule dynamics in cells.


Assuntos
Cinesinas/antagonistas & inibidores , Pirimidinas/química , Tiazolidinas/química , Moduladores de Tubulina/química , Difosfato de Adenosina/química , Trifosfato de Adenosina/química , Regulação Alostérica , Animais , Bovinos , Avaliação Pré-Clínica de Medicamentos , Humanos , Cinesinas/química , Microtúbulos/química , Multimerização Proteica
4.
PLoS One ; 7(4): e35286, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22545101

RESUMO

In all organisms, cell polarity is fundamental for most aspects of cell physiology. In many species and cell types, it is controlled by the evolutionarily conserved PAR-3, PAR-6 and aPKC proteins, which are asymmetrically localized at the cell cortex where they define specific domains. While PAR proteins define the antero-posterior axis of the early C. elegans embryo, the mechanism controlling their asymmetric localization is not fully understood. Here we studied the role of endocytic regulators in embryonic polarization and asymmetric division. We found that depleting the early endosome regulator RAB-5 results in polarity-related phenotypes in the early embryo. Using Total Internal Reflection Fluorescence (TIRF) microscopy, we observed that PAR-6 is localized at the cell cortex in highly dynamic puncta and depleting RAB-5 decreased PAR-6 cortical dynamics during the polarity maintenance phase. Depletion of RAB-5 also increased PAR-6 association with clathrin heavy chain (CHC-1) and this increase depended on the presence of the GTPase dynamin, an upstream regulator of endocytosis. Interestingly, further analysis indicated that loss of RAB-5 leads to a disorganization of the actin cytoskeleton and that this occurs independently of dynamin activity. Our results indicate that RAB-5 promotes C. elegans embryonic polarity in both dynamin-dependent and -independent manners, by controlling PAR-6 localization and cortical dynamics through the regulation of its association with the cell cortex and the organization of the actin cytoskeleton.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Polaridade Celular , Embrião não Mamífero/citologia , Proteínas de Transporte Vesicular/metabolismo , Actomiosina/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/análise , Proteínas de Caenorhabditis elegans/genética , Dinaminas/metabolismo , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fenótipo , Proteínas de Transporte Vesicular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA