Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biol Res ; 57(1): 46, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014514

RESUMO

BACKGROUND: The nucleus incertus (NI) was originally described by Streeter in 1903, as a midline region in the floor of the fourth ventricle of the human brain with an 'unknown' function. More than a century later, the neuroanatomy of the NI has been described in lower vertebrates, but not in humans. Therefore, we examined the neurochemical anatomy of the human NI using markers, including the neuropeptide, relaxin-3 (RLN3), and began to explore the distribution of the NI-related RLN3 innervation of the hippocampus. METHODS: Histochemical staining of serial, coronal sections of control human postmortem pons was conducted to reveal the presence of the NI by detection of immunoreactivity (IR) for the neuronal markers, microtubule-associated protein-2 (MAP2), glutamic acid dehydrogenase (GAD)-65/67 and corticotrophin-releasing hormone receptor 1 (CRHR1), and RLN3, which is highly expressed in NI neurons in diverse species. RLN3 and vesicular GABA transporter 1 (vGAT1) mRNA were detected by fluorescent in situ hybridization. Pons sections containing the NI from an AD case were immunostained for phosphorylated-tau, to explore potential relevance to neurodegenerative diseases. Lastly, sections of the human hippocampus were stained to detect RLN3-IR and somatostatin (SST)-IR. RESULTS: In the dorsal, anterior-medial region of the human pons, neurons containing RLN3- and MAP2-IR, and RLN3/vGAT1 mRNA-positive neurons were observed in an anatomical pattern consistent with that of the NI in other species. GAD65/67- and CRHR1-immunopositive neurons were also detected within this area. Furthermore, RLN3- and AT8-IR were co-localized within NI neurons of an AD subject. Lastly, RLN3-IR was detected in neurons within the CA1, CA2, CA3 and DG areas of the hippocampus, in the absence of RLN3 mRNA. In the DG, RLN3- and SST-IR were co-localized in a small population of neurons. CONCLUSIONS: Aspects of the anatomy of the human NI are shared across species, including a population of stress-responsive, RLN3-expressing neurons and a RLN3 innervation of the hippocampus. Accumulation of phosphorylated-tau in the NI suggests its possible involvement in AD pathology. Further characterization of the neurochemistry of the human NI will increase our understanding of its functional role in health and disease.


Assuntos
Ponte , Humanos , Ponte/metabolismo , Masculino , Hipocampo/química , Hipocampo/metabolismo , Feminino , Relaxina/metabolismo , Relaxina/genética , Idoso , Neurônios/química , Memória/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Glutamato Descarboxilase/metabolismo , Glutamato Descarboxilase/genética , Receptores de Hormônio Liberador da Corticotropina
2.
Nat Neurosci ; 27(5): 952-963, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38499854

RESUMO

Innate behaviors meet multiple needs adaptively and in a serial order, suggesting the existence of a hitherto elusive brain dynamics that brings together representations of upcoming behaviors during their selection. Here we show that during behavioral transitions, possible upcoming behaviors are encoded by specific signatures of neuronal populations in the lateral hypothalamus (LH) that are active near beta oscillation peaks. Optogenetic recruitment of intrahypothalamic inhibition at this phase eliminates behavioral transitions. We show that transitions are elicited by beta-rhythmic inputs from the prefrontal cortex that spontaneously synchronize with LH 'transition cells' encoding multiple behaviors. Downstream of the LH, dopamine neurons increase firing during beta oscillations and also encode behavioral transitions. Thus, a hypothalamic transition state signals alternative future behaviors, encodes the one most likely to be selected and enables rapid coordination with cognitive and reward-processing circuitries, commanding adaptive social contact and eating behaviors.


Assuntos
Ritmo beta , Vias Neurais , Córtex Pré-Frontal , Animais , Córtex Pré-Frontal/fisiologia , Vias Neurais/fisiologia , Masculino , Ritmo beta/fisiologia , Camundongos , Optogenética , Comportamento Animal/fisiologia , Região Hipotalâmica Lateral/fisiologia , Recompensa , Neurônios Dopaminérgicos/fisiologia , Hipotálamo/fisiologia
3.
eNeuro ; 11(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38423792

RESUMO

The motor cortex comprises the primary descending circuits for flexible control of voluntary movements and is critically involved in motor skill learning. Motor skill learning is impaired in patients with Parkinson's disease, but the precise mechanisms of motor control and skill learning are still not well understood. Here we have used transgenic mice, electrophysiology, in situ hybridization, and neural tract-tracing methods to target genetically defined cell types expressing D1 and D2 dopamine receptors in the motor cortex. We observed that putative D1 and D2 dopamine receptor-expressing neurons (D1+ and D2+, respectively) are organized in highly segregated, nonoverlapping populations. Moreover, based on ex vivo patch-clamp recordings, we showed that D1+ and D2+ cells have distinct morphological and electrophysiological properties. Finally, we observed that chemogenetic inhibition of D2+, but not D1+, neurons disrupts skilled forelimb reaching in adult mice. Overall, these results demonstrate that dopamine receptor-expressing cells in the motor cortex are highly segregated and play a specialized role in manual dexterity.


Assuntos
Córtex Motor , Camundongos , Humanos , Animais , Córtex Motor/metabolismo , Receptores de Dopamina D1/metabolismo , Neurônios Dopaminérgicos/metabolismo , Camundongos Transgênicos , Encéfalo/metabolismo , Corpo Estriado/metabolismo
4.
Nat Commun ; 14(1): 1066, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36828816

RESUMO

The hypothalamic neuropeptide oxytocin (OT) exerts prominent analgesic effects via central and peripheral action. However, the precise analgesic pathways recruited by OT are largely elusive. Here we discovered a subset of OT neurons whose projections preferentially terminate on OT receptor (OTR)-expressing neurons in the ventrolateral periaqueductal gray (vlPAG). Using a newly generated line of transgenic rats (OTR-IRES-Cre), we determined that most of the vlPAG OTR expressing cells targeted by OT projections are GABAergic. Ex vivo stimulation of parvocellular OT axons in the vlPAG induced local OT release, as measured with OT sensor GRAB. In vivo, optogenetically-evoked axonal OT release in the vlPAG of as well as chemogenetic activation of OTR vlPAG neurons resulted in a long-lasting increase of vlPAG neuronal activity. This lead to an indirect suppression of sensory neuron activity in the spinal cord and strong analgesia in both female and male rats. Altogether, we describe an OT-vlPAG-spinal cord circuit that is critical for analgesia in both inflammatory and neuropathic pain models.


Assuntos
Neuralgia , Ocitocina , Ratos , Masculino , Feminino , Animais , Ocitocina/metabolismo , Substância Cinzenta Periaquedutal/fisiologia , Neurônios/metabolismo , Analgésicos/farmacologia , Neuralgia/metabolismo
5.
Neuropharmacology ; 218: 109216, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35973599

RESUMO

Nucleus incertus (NI) is a brainstem structure involved in the control of arousal, stress responses and locomotor activity. It was reported recently that NI neurons express the dopamine type 2 (D2) receptor that belongs to the D2-like receptor (D2R) family, and that D2R activation in the NI decreased locomotor activity. In this study, using multiplex in situ hybridization, we observed that GABAergic and glutamatergic NI neurons express D2 receptor mRNA, and that D2 receptor mRNA-positive neurons belong to partially overlapping relaxin-3- and cholecystokinin-positive NI neuronal populations. Our immunohistochemical and viral-based retrograde tract-tracing studies revealed a dense innervation of the NI area by fibers containing the catecholaminergic biosynthesis enzymes, tyrosine hydroxylase (TH) and dopamine ß-hydroxylase (DBH), and indicated the major sources of the catecholaminergic innervation of the NI as the Darkschewitsch, raphe and hypothalamic A13 nuclei. Furthermore, using whole-cell patch clamp recordings, we demonstrated that D2R activation by quinpirole produced excitatory and inhibitory influences on neuronal activity in the NI, and that both effects were postsynaptic in nature. Moreover, the observed effects were cell-type specific, as type I NI neurons were either excited or inhibited, whereas type II NI neurons were mainly excited by D2R activation. Our results reveal that rat NI receives a strong catecholaminergic innervation and suggest that catecholamines acting within the NI are involved in the control of diverse processes, including locomotor activity, social interaction and nociceptive signaling. Our data also strengthen the hypothesis that the NI acts as a hub integrating arousal-related neuronal information.


Assuntos
Dopamina , Núcleos da Rafe , Animais , Dopamina/farmacologia , Neurônios , RNA Mensageiro , Núcleos da Rafe/metabolismo , Ratos , Receptores de Dopamina D2/metabolismo
6.
Front Cell Neurosci ; 16: 836116, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281300

RESUMO

The medial septum (MS) is critically involved in theta rhythmogenesis and control of the hippocampal network, with which it is reciprocally connected. MS activity is influenced by brainstem structures, including the stress-sensitive, nucleus incertus (NI), the main source of the neuropeptide relaxin-3 (RLN3). In the current study, we conducted a comprehensive neurochemical and electrophysiological characterization of NI neurons innervating the MS in the rat, by employing classical and viral-based neural tract-tracing and electrophysiological approaches, and multiplex fluorescent in situ hybridization. We confirmed earlier reports that the MS is innervated by RLN3 NI neurons and documented putative glutamatergic (vGlut2 mRNA-expressing) neurons as a relevant NI neuronal population within the NI-MS tract. Moreover, we observed that NI neurons innervating MS can display a dual phenotype for GABAergic and glutamatergic neurotransmission, and that 40% of MS-projecting NI neurons express the corticotropin-releasing hormone-1 receptor. We demonstrated that an identified cholecystokinin (CCK)-positive NI neuronal population is part of the NI-MS tract, and that RLN3 and CCK NI neurons belong to a neuronal pool expressing the calcium-binding proteins, calbindin and calretinin. Finally, our electrophysiological studies revealed that MS is innervated by A-type potassium current-expressing, type I NI neurons, and that type I and II NI neurons differ markedly in their neurophysiological properties. Together these findings indicate that the MS is controlled by a discrete NI neuronal network with specific electrophysiological and neurochemical features; and these data are of particular importance for understanding neuronal mechanisms underlying the control of the septohippocampal system and related behaviors.

7.
Neuroscience ; 490: 49-65, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35202782

RESUMO

Early-life stress (ELS) has long-term consequences, including an increased risk for drug abuse and psychiatric disorders later in life, which is higher in women than in men. The consequences of ELS include heightened sensitivity to stressful events. Here, we hypothesized that ELS changes the stress sensitivity of dopaminergic (DAergic) neurons in the ventral tegmental area (VTA) and orexin (OXA) neurons in the lateral hypothalamus (LH), that are crucial for the control of motivated behaviors. We combined morphological and immunohistochemical approaches to investigate the effect of maternal separation (MS), a rodent model of the ELS, on the expression of c-Fos protein in putative DAergic and non-DAergic VTA and LH OXA neurons, as well as on dendritic spine density and morphology in the VTA of adult female rats. We showed that MS increased basal and acute restraint stress-induced c-Fos expression in putative DAergic neurons, specifically in the dorsomedial VTA, an area implicated in responsiveness to aversive stimuli. Conversely, restraint-induced increase in c-Fos expression in non-DAergic dorsolateral VTA neurons was dampened by MS. Furthermore, an increase in spine head diameter of VTA neurons and a concurrent decrease in dendritic spine density in dorsal VTA were observed. We also showed that MS changed the stress sensitivity of OXA neurons selectively in the dorsomedial hypothalamus (DMH), which is implicated in arousal and the stress response. These findings show the long-lasting consequences of ELS and indicate the selective, regional sensitivity of structures involved in the control of arousal, motivational behaviors and the stress response to ELS.


Assuntos
Experiências Adversas da Infância , Área Tegmentar Ventral , Animais , Neurônios Dopaminérgicos/metabolismo , Feminino , Humanos , Região Hipotalâmica Lateral , Privação Materna , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Área Tegmentar Ventral/metabolismo
8.
J Neurosci ; 42(11): 2234-2252, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35078925

RESUMO

Theta oscillations are key brain rhythm involved in memory formation, sensorimotor integration, and control of locomotion and behavioral states. Generation and spatiotemporal synchronization of theta oscillations rely on interactions between brain nuclei forming a large neural network, which includes pontine nucleus incertus (NI). Here we identified distinct populations of NI neurons, based on the relationship of their firing to hippocampal waves, with a special focus on theta oscillations, and the direction and type of interaction with the medial septum (MS) in male, urethane-anesthetized rats. By recording NI neuronal firing and hippocampal LFP, we described NI neurons that fire action potentials in a theta phase-independent or theta phase-locked and delta wave-independent or delta wave-locked manner. Among hippocampal activity-independent NI neurons, irregular, slow-firing, and regular, fast-firing cells were observed, while hippocampal oscillation-/wave-locked NI neurons were of a bursting or nonbursting type. By projection-specific optotagging, we revealed that only fast-firing theta phase-independent NI neurons innervate the MS, rarely receiving feedback information. In contrast, the majority of theta-bursting NI neurons were inhibited by MS stimulation, and this effect was mediated by direct GABAergic input. Described NI neuronal populations differ in reciprocal connections with the septohippocampal system, plausibly forming separate neuronal loops. Our results suggest that theta phase-independent NI neurons participate in theta rhythm generation through direct innervation of the MS, while theta-bursting NI neurons further transmit the rhythmic signal received from the MS to stabilize and/or strengthen rhythmic activity in other structures.SIGNIFICANCE STATEMENT The generation and spatiotemporal synchronization of theta oscillations rely on interactions between nuclei forming a large neural network, part of which is the pontine nucleus incertus (NI). Here we describe that within NI there are populations of neurons that can be distinguished based on the relationship of their firing to hippocampal theta oscillations and delta waves. We show that these neuronal populations largely do not have reciprocal connections with the septohippocampal system, but form separate neuronal loops. Our results suggest that medial septum (MS)-projecting, fast-firing, theta phase-independent NI neurons may participate in theta rhythm generation through direct innervation of the MS, while theta-bursting NI neurons may further transmit the rhythmic signal received from the MS to other structures.


Assuntos
Neurônios , Ritmo Teta , Potenciais de Ação/fisiologia , Animais , Hipocampo/fisiologia , Masculino , Neurônios/fisiologia , Núcleos da Rafe , Ratos
9.
Neuropsychopharmacology ; 43(7): 1548-1556, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29463910

RESUMO

The risk factors for developing alcohol addiction include impulsivity, high sensitivity to the rewarding action of ethanol, and low sensitivity to its sedative and intoxicating effects. Genetic variation in GABAA receptor subunits, including the ɣ2 subunit (Gabrg2), affects the risk for developing alcoholism. Alcohol directly potentiates GABAA receptors and activates the mesolimbic dopamine system. Here, we deleted Gabrg2 selectively in dopamine cells of adult mice. The deletion resulted in elevated firing of dopamine neurons and made them less sensitive to drugs acting at GABAA receptors. At the behavioral level, the deletion increased exploratory behavior and augmented both correct and incorrect responding in the go/no-go task, a test often used to assay the response inhibition component of impulsivity. In addition, conditioned place preference to alcohol, but not to cocaine or morphine, was increased. Ethanol-induced locomotor activation was enhanced in the mice lacking Gabrg2 on dopaminergic cells, whereas the sedative effect of alcohol was reduced. Finally, the alcohol drinking, but not the alcohol preference, at a high concentration was increased in the mutant mice. In summary, deletion of Gabrg2 on dopamine cells induced several behavioral traits associated with high risk of developing alcoholism. The findings suggest that mice lacking Gabrg2 on dopaminergic cells could be used as models for individuals at high risk for developing alcoholism and that GABAA receptors on dopamine cells are protective against the development of excessive alcohol drinking.


Assuntos
Condicionamento Psicológico/fisiologia , Neurônios Dopaminérgicos/fisiologia , Comportamento Exploratório/fisiologia , Inibição Psicológica , Receptores de GABA-A/fisiologia , Consumo de Bebidas Alcoólicas/fisiopatologia , Animais , Comportamento de Escolha/efeitos dos fármacos , Cocaína/farmacologia , Etanol/farmacologia , Hipnóticos e Sedativos/farmacologia , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Morfina/farmacologia , Receptores de GABA-A/genética
10.
Behav Brain Res ; 317: 319-326, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27693266

RESUMO

Long-term potentiation (LTP) and long-term depression (LTD) are two opposite forms of synaptic plasticity at the cortical and thalamic inputs to the lateral amygdala (LA). It has been demonstrated that maternal separation (MS) of rat pups results in alterations in the potential for both pathways to undergo LTP and LTD in adolescence. Imipramine, a prototypic tricyclic antidepressant, has been shown to counteract some detrimental effects of MS on rat behavior, however it is not known whether MS-induced alterations in the potential for bidirectional synaptic plasticity in the LA could be reversed by imipramine treatment. To this end, rat pups were subjected to MS (3h/day) on postnatal days (PNDs) 1-21. On each of PNDs 29-42, male rats previously subjected to MS were injected subcutaneously with imipramine (10mg/kg). Field potentials were recorded ex vivo from slices containing the LA and saturating levels of LTP and LTD were induced. At the thalamic input to the LA, both the maximum LTP and the maximum LTD were reduced in rats subjected to MS when compared to control animals, confirming earlier results. However, these effects were no longer present in rats subjected to MS and later treated with imipramine. At the cortical input in slices prepared from MS-subjected rats, an impairment of the maximum LTP and an enhancement of the maximum LTD were observed. At the cortical input in rats subjected to MS and receiving imipramine treatment, the level of LTD was comparable to control but imipramine did not restore the potential for LTP at this input. These results demonstrate that imipramine fully reverses the effects of MS in the thalamo-amygdalar pathway, however, in the cortico-amygdalar pathway the reversal of the effects of MS by imipramine is partial.


Assuntos
Antidepressivos Tricíclicos/farmacologia , Complexo Nuclear Basolateral da Amígdala/citologia , Imipramina/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Privação Materna , Animais , Animais Recém-Nascidos , Estimulação Elétrica , Feminino , Técnicas In Vitro , Masculino , Plasticidade Neuronal , Técnicas de Patch-Clamp , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA