Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Genome Med ; 16(1): 28, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347552

RESUMO

BACKGROUND: Children with relapsed central nervous system (CNS tumors), neuroblastoma, sarcomas, and other rare solid tumors face poor outcomes. This prospective clinical trial examined the feasibility of combining genomic and transcriptomic profiling of tumor samples with a molecular tumor board (MTB) approach to make real­time treatment decisions for children with relapsed/refractory solid tumors. METHODS: Subjects were divided into three strata: stratum 1-relapsed/refractory neuroblastoma; stratum 2-relapsed/refractory CNS tumors; and stratum 3-relapsed/refractory rare solid tumors. Tumor samples were sent for tumor/normal whole-exome (WES) and tumor whole-transcriptome (WTS) sequencing, and the genomic data were used in a multi-institutional MTB to make real­time treatment decisions. The MTB recommended plan allowed for a combination of up to 4 agents. Feasibility was measured by time to completion of genomic sequencing, MTB review and initiation of treatment. Response was assessed after every two cycles using Response Evaluation Criteria in Solid Tumors (RECIST). Patient clinical benefit was calculated by the sum of the CR, PR, SD, and NED subjects divided by the sum of complete response (CR), partial response (PR), stable disease (SD), no evidence of disease (NED), and progressive disease (PD) subjects. Grade 3 and higher related and unexpected adverse events (AEs) were tabulated for safety evaluation. RESULTS: A total of 186 eligible patients were enrolled with 144 evaluable for safety and 124 evaluable for response. The average number of days from biopsy to initiation of the MTB-recommended combination therapy was 38 days. Patient benefit was exhibited in 65% of all subjects, 67% of neuroblastoma subjects, 73% of CNS tumor subjects, and 60% of rare tumor subjects. There was little associated toxicity above that expected for the MGT drugs used during this trial, suggestive of the safety of utilizing this method of selecting combination targeted therapy. CONCLUSIONS: This trial demonstrated the feasibility, safety, and efficacy of a comprehensive sequencing model to guide personalized therapy for patients with any relapsed/refractory solid malignancy. Personalized therapy was well tolerated, and the clinical benefit rate of 65% in these heavily pretreated populations suggests that this treatment strategy could be an effective option for relapsed and refractory pediatric cancers. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02162732. Prospectively registered on June 11, 2014.


Assuntos
Neuroblastoma , Criança , Humanos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/etiologia
2.
Vet Comp Oncol ; 22(1): 30-41, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38053317

RESUMO

A genomic understanding of the oncogenic processes and individual variability of human cancer has steadily fueled improvement in patient outcomes over the past 20 years. Mutations within tumour tissues are routinely assessed through clinical genomic diagnostic assays by academic and commercial laboratories to facilitate diagnosis, prognosis and effective treatment stratification. The application of genomics has unveiled a wealth of mutation-based biomarkers in canine cancers, suggesting that the transformative principles that have revolutionized human cancer medicine can be brought to bear in veterinary oncology. To advance clinical genomics and genomics-guided medicine in canine oncology, we have developed and validated a canine cancer next-generation sequencing gene panel for the identification of multiple mutation types in clinical specimens. With this panel, we examined the genomic landscapes of 828 tumours from 813 dogs, spanning 53 cancer types. We identified 7856 alterations, encompassing copy number variants, single nucleotide variants, indels and internal tandem duplications. Additionally, we evaluated the clinical utility of these alterations by incorporating a biomarker framework from comprehensive curation of primary canine literature and inferences from human cancer genomic biomarker literature and clinical diagnostics. Remarkably, nearly 90% of the cases exhibited mutations with diagnostic, prognostic or therapeutic implications. Our work represents a thorough assessment of genomic landscapes in a large cohort of canine cancers, the first of its kind for its comprehensive inclusion of multiple mutation types and structured annotation of biomarkers, demonstrating the clinical potential of leveraging mutation-based biomarkers in veterinary oncology.


Assuntos
Doenças do Cão , Neoplasias , Cães , Humanos , Animais , Doenças do Cão/genética , Neoplasias/genética , Neoplasias/veterinária , Genômica , Mutação , Biomarcadores Tumorais/genética
3.
Vet Comp Oncol ; 21(4): 565-577, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37778398

RESUMO

Pet dogs develop spontaneous cancers at a rate estimated to be five times higher than that of humans, providing a unique opportunity to study disease biology and evaluate novel therapeutic strategies in a model system that possesses an intact immune system and mirrors key aspects of human cancer biology. Despite decades of interest, effective utilization of pet dog cancers has been hindered by a limited repertoire of necessary cellular and molecular reagents for both in vitro and in vivo studies, as well as a dearth of information regarding the genomic landscape of these cancers. Recently, many of these critical gaps have been addressed through the generation of a highly annotated canine reference genome, the creation of several tools necessary for multi-omic analysis of canine tumours, and the development of a centralized repository for key genomic and associated clinical information from canine cancer patients, the Integrated Canine Data Commons. Together, these advances have catalysed multidisciplinary efforts designed to integrate the study of pet dog cancers more effectively into the translational continuum, with the ultimate goal of improving human outcomes. The current review summarizes this recent progress and provides a guide to resources and tools available for comparative study of pet dog cancers.


Assuntos
Doenças do Cão , Neoplasias , Humanos , Cães , Animais , Doenças do Cão/genética , Doenças do Cão/patologia , Neoplasias/genética , Neoplasias/terapia , Neoplasias/veterinária , Genômica , Oncologia , Modelos Animais de Doenças
4.
JCO Precis Oncol ; 7: e2200543, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37027813

RESUMO

PURPOSE: Circulating tumor DNA (ctDNA) has been validated across multiple indications in the adjuvant and surveillance settings. We evaluated whether targeted digital sequencing (TARDIS) may distinguish a partial response (PR) from a complete response (CR) among patients with metastatic renal cell carcinoma (mRCC) receiving immune checkpoint inhibitor (ICI) therapy. MATERIALS AND METHODS: Eligible patients had mRCC that yielded a PR or CR to ICI therapy. Peripheral blood was obtained at a single time point for ctDNA analysis. TARDIS was used for quantification of average variant allele fractions (VAFs). Our primary objective was to determine the association between VAFs and depth of response (PR v CR). A secondary objective was to determine whether VAFs were associated with disease progression. RESULTS: Twelve patients were analyzed, nine of whom achieved a PR (75%). Patients received either nivolumab monotherapy (50%) or nivolumab plus ipilimumab (50%). ctDNA analysis incorporated an average of 30 patient-specific mutations (range, 19-35); average coverage depth was 103,342 reads per target. TARDIS quantified a significant difference in VAFs between PR and CR (median, 0.181% [IQR, 0.077%-0.420%] v 0.007% [IQR, 0.0%-0.028%], respectively [P = .014]). Of the 12 patients in the series, six patients demonstrated radiographic progression subsequent to ctDNA assessment. Patients who progressed on subsequent scans had significantly higher ctDNA than those who maintained their response (median, 0.362% [IQR, 0.181%-2.71%] v 0.033% [IQR, 0.007%-0.077%], respectively [P = .026]). CONCLUSION: In this pilot study, TARDIS accurately differentiated PR from CR among patients with mRCC receiving immunotherapy, and also prospectively identified patients at risk for subsequent progression. Given these findings, we envision subsequent studies that validate these results and investigate the utility of this assay to discern appropriate candidates for discontinuation of immunotherapy.


Assuntos
Carcinoma de Células Renais , DNA Tumoral Circulante , Neoplasias Renais , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , DNA Tumoral Circulante/genética , Nivolumabe/uso terapêutico , Projetos Piloto , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/patologia , Imunoterapia/métodos
5.
Cancer Epidemiol Biomarkers Prev ; 32(4): 487-495, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36791345

RESUMO

BACKGROUND: Engaging diverse populations in cancer genomics research is of critical importance and is a fundamental goal of the NCI Participant Engagement and Cancer Genome Sequencing (PE-CGS) Network. Established as part of the Cancer Moonshot, PE-CGS is a consortium of stakeholders including clinicians, scientists, genetic counselors, and representatives of potential study participants and their communities. Participant engagement is an ongoing, bidirectional, and mutually beneficial interaction between study participants and researchers. PE-CGS sought to set priorities in participant engagement for conducting the network's research. METHODS: PE-CGS deliberatively engaged its stakeholders in the following four-phase process to set the network's research priorities in participant engagement: (i) a brainstorming exercise to elicit potential priorities; (ii) a 2-day virtual meeting to discuss priorities; (iii) recommendations from the PE-CGS External Advisory Panel to refine priorities; and (iv) a virtual meeting to set priorities. RESULTS: Nearly 150 PE-CGS stakeholders engaged in the process. Five priorities were set: (i) tailor education and communication materials for participants throughout the research process; (ii) identify measures of participant engagement; (iii) identify optimal participant engagement strategies; (iv) understand cancer disparities in the context of cancer genomics research; and (v) personalize the return of genomics findings to participants. CONCLUSIONS: PE-CGS is pursuing these priorities to meaningfully engage diverse and underrepresented patients with cancer and posttreatment cancer survivors as participants in cancer genomics research and, subsequently, generate new discoveries. IMPACT: Data from PE-CGS will be shared with the broader scientific community in a manner consistent with participant informed consent and community agreement.


Assuntos
Consentimento Livre e Esclarecido , Neoplasias , Humanos , Neoplasias/genética , Motivação , Genômica , Escolaridade
6.
Sci Transl Med ; 15(678): eabm6863, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36630480

RESUMO

Genome-wide fragmentation patterns in cell-free DNA (cfDNA) in plasma are strongly influenced by cellular origin due to variation in chromatin accessibility across cell types. Such differences between healthy and cancer cells provide the opportunity for development of novel cancer diagnostics. Here, we investigated whether analysis of cfDNA fragment end positions and their surrounding DNA sequences reveals the presence of tumor-derived DNA in blood. We performed genome-wide analysis of cfDNA from 521 samples and analyzed sequencing data from an additional 2147 samples, including healthy individuals and patients with 11 different cancer types. We developed a metric based on genome-wide differences in fragment positioning, weighted by fragment length and GC content [information-weighted fraction of aberrant fragments (iwFAF)]. We observed that iwFAF strongly correlated with tumor fraction, was higher for DNA fragments carrying somatic mutations, and was higher within genomic regions affected by copy number amplifications. We also calculated sample-level means of nucleotide frequencies observed at genomic positions spanning fragment ends. Using a combination of iwFAF and nine nucleotide frequencies from three positions surrounding fragment ends, we developed a machine learning model to differentiate healthy individuals from patients with cancer. We observed an area under the receiver operative characteristic curve (AUC) of 0.91 for detection of cancer at any stage and an AUC of 0.87 for detection of stage I cancer. Our findings remained robust with as few as 1 million fragments analyzed per sample, demonstrating that analysis of fragment ends can become a cost-effective and accessible approach for cancer detection and monitoring.


Assuntos
Ácidos Nucleicos Livres , Neoplasias , Humanos , DNA/genética , Neoplasias/genética , Cromatina , Nucleotídeos , Biomarcadores Tumorais/genética , Análise de Sequência de DNA
7.
PLoS One ; 17(7): e0264986, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35867969

RESUMO

Cancer genomic heterogeneity presents significant challenges for understanding oncogenic processes and for cancer's clinical management. Variation in driver mutation frequency between patients with the same tumor type as well as within an individual patients' cancer can shape the use of mutations as diagnostic, prognostic, and predictive biomarkers. We have characterized genomic heterogeneity between and within canine splenic hemangiosarcoma (HSA), a common naturally occurring cancer in pet dogs that is similar to human angiosarcoma (AS). HSA is a clinically, physiologically, and genomically complex canine cancer that may serve as a valuable model for understanding the origin and clinical impact of cancer heterogeneity. We conducted a prospective collection of 52 splenic masses from 43 dogs (27 HSA, 15 benign masses, and 1 stromal sarcoma) presenting for emergency care with hemoperitoneum secondary to a ruptured splenic mass. Multi-platform genomic analysis included matched tumor/normal targeted sequencing panel and exome sequencing. We found candidate somatic cancer driver mutations in 14/27 (52%) HSAs. Among recurrent candidate driver mutations, TP53 was most commonly mutated (30%) followed by PIK3CA (15%), AKT1 (11%), and CDKN2AIP (11%). We also identified significant intratumoral genomic heterogeneity, consistent with a branched evolution model, through multi-region exome sequencing of three distinct tumor regions from selected primary splenic tumors. These data provide new perspectives on the genomic landscape of this veterinary cancer and suggest a cross-species value for using HSA in pet dogs as a naturally occurring model of intratumoral heterogeneity.


Assuntos
Doenças do Cão , Hemangiossarcoma , Neoplasias Esplênicas , Animais , Doenças do Cão/genética , Cães , Genômica , Hemangiossarcoma/genética , Hemangiossarcoma/veterinária , Humanos , Mutação , Estudos Prospectivos , Neoplasias Esplênicas/genética , Neoplasias Esplênicas/veterinária , Sequenciamento do Exoma
8.
JAMA Health Forum ; 3(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35755401

RESUMO

IMPORTANCE: Research into the genetic and genomic ("genomics") foundations of disease is central to our understanding of disease prevention, early detection, diagnostic accuracy, and therapeutic intervention. Inequitable participation in genomics research by historically excluded populations limits the ability to translate genomic knowledge to achieve health equity and ensure that findings are generalizable to diverse populations. OBSERVATIONS: We propose a novel framework for promoting diversity, equity, and inclusion in genomics research. Building on principles of community-based participatory research and collective impact frameworks, the framework can guide our understanding of the social, cultural, health system, policy, community, and individual contexts in which engagement and genomics research are being done. Our framework highlights the involvement of a multistakeholder team, including the participants and communities to be engaged, to ensure robust methods for recruitment, retention, return of genomic results, quality of engagement, follow-up, and monitoring of participants. CONCLUSIONS AND RELEVANCE: The proposed engagement framework will guide investigators in optimizing equitable representation in research and enhancing the rigor of genomics investigation.


Assuntos
Pesquisa Participativa Baseada na Comunidade , Equidade em Saúde , Pesquisa Participativa Baseada na Comunidade/métodos , Genômica , Humanos , Grupos Populacionais
9.
Sci Rep ; 12(1): 6337, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35428782

RESUMO

Comparative studies of naturally occurring canine cancers have provided new insight into many areas of cancer research. Development and validation of circulating tumor DNA (ctDNA) analysis in pet dogs can help address diagnostic needs in veterinary as well as human oncology. Dogs have high incidence of naturally occurring spontaneous cancers, demonstrate molecular heterogeneity and clonal evolution during therapy, allow serial sampling of blood from the same individuals during the course of disease progression, and have relatively compressed intervals for disease progression amenable to longitudinal studies. Here, we present a feasibility study of ctDNA analysis performed in 48 dogs including healthy dogs and dogs with either benign splenic lesions or malignant splenic tumors (hemangiosarcoma) using shallow whole genome sequencing (sWGS) of cell-free DNA. To enable detection and quantification of ctDNA using sWGS, we adapted two informatic approaches and compared their performance for the canine genome. At the time of initial clinical presentation, mean ctDNA fraction in dogs with malignant splenic tumors was 11.2%, significantly higher than dogs with benign lesions (3.2%; p = 0.001). ctDNA fraction was 14.3% and 9.0% in dogs with metastatic and localized disease, respectively (p = 0.227). In dogs treated with surgical resection of malignant tumors, mean ctDNA fraction decreased from 11.0% prior to resection to 7.9% post-resection (p = 0.047 for comparison of paired samples). Our results demonstrate that ctDNA analysis is feasible in dogs with hemangiosarcoma using a cost-effective approach such as sWGS. Additional studies are needed to validate these findings, and determine the role of ctDNA to assess burden of disease and treatment response in dogs with cancer.


Assuntos
DNA Tumoral Circulante , Hemangiossarcoma , Neoplasias Esplênicas , Animais , Biomarcadores Tumorais/genética , DNA Tumoral Circulante/genética , Progressão da Doença , Cães , Estudos de Viabilidade , Hemangiossarcoma/genética , Hemangiossarcoma/veterinária , Mutação , Neoplasias Esplênicas/genética , Neoplasias Esplênicas/veterinária
10.
Cancer Rep (Hoboken) ; 5(11): e1616, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35355452

RESUMO

BACKGROUND: Survival for patients with high-risk neuroblastoma (HRNB) remains poor despite aggressive multimodal therapies. AIMS: To study the feasibility and safety of incorporating a genomic-based targeted agent to induction therapy for HRNB as well as the feasibility and safety of adding difluoromethylornithine (DFMO) to anti-GD2 immunotherapy. METHODS: Twenty newly diagnosed HRNB patients were treated on this multicenter pilot trial. Molecular tumor boards selected one of six targeted agents based on tumor-normal whole exome sequencing and tumor RNA-sequencing results. Treatment followed standard upfront HRNB chemotherapy with the addition of the selected targeted agent to cycles 3-6 of induction. Following consolidation, DFMO (750 mg/m2 twice daily) was added to maintenance with dinutuximab and isotretinoin, followed by continuation of DFMO alone for 2 years. DNA methylation analysis was performed retrospectively and compared to RNA expression. RESULTS: Of the 20 subjects enrolled, 19 started targeted therapy during cycle 3 and 1 started during cycle 5. Eighty-five percent of subjects met feasibility criteria (receiving 75% of targeted agent doses). Addition of targeted agents did not result in toxicities requiring dose reduction of chemotherapy or permanent discontinuation of targeted agent. Following standard consolidation, 15 subjects continued onto immunotherapy with DFMO. This combination was well-tolerated and resulted in no unexpected adverse events related to DFMO. CONCLUSION: This study demonstrates the safety and feasibility of adding targeted agents to standard induction therapy and adding DFMO to immunotherapy for HRNB. This treatment regimen has been expanded to a Phase II trial to evaluate efficacy.


Assuntos
Antineoplásicos , Neuroblastoma , Humanos , Eflornitina/efeitos adversos , Projetos Piloto , Quimioterapia de Indução , Estudos Retrospectivos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Imunoterapia , Antineoplásicos/uso terapêutico , Fatores Imunológicos , Genômica , RNA/uso terapêutico
11.
Cancer Res ; 81(23): 5818-5832, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34610968

RESUMO

Children with treatment-refractory or relapsed (R/R) tumors face poor prognoses. As the genomic underpinnings driving R/R disease are not well defined, we describe here the genomic and transcriptomic landscapes of R/R solid tumors from 202 patients enrolled in Beat Childhood Cancer Consortium clinical trials. Tumor mutational burden (TMB) was elevated relative to untreated tumors at diagnosis, with one-third of tumors classified as having a pediatric high TMB. Prior chemotherapy exposure influenced the mutational landscape of these R/R tumors, with more than 40% of tumors demonstrating mutational signatures associated with platinum or temozolomide chemotherapy and two tumors showing treatment-associated hypermutation. Immunogenomic profiling found a heterogenous pattern of neoantigen and MHC class I expression and a general absence of immune infiltration. Transcriptional analysis and functional gene set enrichment analysis identified cross-pathology clusters associated with development, immune signaling, and cellular signaling pathways. While the landscapes of these R/R tumors reflected those of their corresponding untreated tumors at diagnosis, important exceptions were observed, suggestive of tumor evolution, treatment resistance mechanisms, and mutagenic etiologies of treatment. SIGNIFICANCE: Tumor heterogeneity, chemotherapy exposure, and tumor evolution contribute to the molecular profiles and increased mutational burden that occur in treatment-refractory and relapsed childhood solid tumors.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/genética , Resistencia a Medicamentos Antineoplásicos , Evasão da Resposta Imune , Mutação , Recidiva Local de Neoplasia/patologia , Neoplasias/patologia , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Seguimentos , Regulação Neoplásica da Expressão Gênica , Humanos , Lactente , Estudos Longitudinais , Masculino , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/imunologia , Prognóstico , Taxa de Sobrevida , Transcriptoma , Adulto Jovem
12.
Sci Rep ; 11(1): 10740, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031440

RESUMO

The robust detection of disease-associated splice events from RNAseq data is challenging due to the potential confounding effect of gene expression levels and the often limited number of patients with relevant RNAseq data. Here we present a novel statistical approach to splicing outlier detection and differential splicing analysis. Our approach tests for differences in the percentages of sequence reads representing local splice events. We describe a software package called Bisbee which can predict the protein-level effect of splice alterations, a key feature lacking in many other splicing analysis resources. We leverage Bisbee's prediction of protein level effects as a benchmark of its capabilities using matched sets of RNAseq and mass spectrometry data from normal tissues. Bisbee exhibits improved sensitivity and specificity over existing approaches and can be used to identify tissue-specific splice variants whose protein-level expression can be confirmed by mass spectrometry. We also applied Bisbee to assess evidence for a pathogenic splicing variant contributing to a rare disease and to identify tumor-specific splice isoforms associated with an oncogenic mutation. Bisbee was able to rediscover previously validated results in both of these cases and also identify common tumor-associated splice isoforms replicated in two independent melanoma datasets.


Assuntos
Processamento Alternativo , Melanoma/genética , Proteínas Proto-Oncogênicas/metabolismo , Análise de Sequência de RNA/métodos , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Humanos , Espectrometria de Massas , Melanoma/metabolismo , Mutação , Especificidade de Órgãos , Proteínas Proto-Oncogênicas/genética , Software
13.
PLoS One ; 16(4): e0248097, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33826614

RESUMO

Although combination BRAF and MEK inhibitors are highly effective for the 40-50% of cutaneous metastatic melanomas harboring BRAFV600 mutations, targeted agents have been ineffective for BRAFV600wild-type (wt) metastatic melanomas. The SU2C Genomics-Enabled Medicine for Melanoma Trial utilized a Simon two-stage optimal design to assess whether comprehensive genomic profiling improves selection of molecular-based therapies for BRAFV600wt metastatic melanoma patients who had progressed on standard-of-care therapy, which may include immunotherapy. Of the response-evaluable patients, binimetinib was selected for 20 patients randomized to the genomics-enabled arm, and nine were treated on the alternate treatment arm. Response rates for 27 patients treated with targeted recommendations included one (4%) partial response, 18 (67%) with stable disease, and eight (30%) with progressive disease. Post-trial genomic and protein pathway activation mapping identified additional drug classes that may be considered for future studies. Our results highlight the complexity and heterogeneity of metastatic melanomas, as well as how the lack of response in this trial may be associated with limitations including monotherapy drug selection and the dearth of available single and combination molecularly-driven therapies to treat BRAFV600wt metastatic melanomas.


Assuntos
Benzimidazóis/administração & dosagem , Genômica , Melanoma , Proteínas Proto-Oncogênicas B-raf , Neoplasias Cutâneas , Adulto , Idoso , Feminino , Humanos , Masculino , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Pessoa de Meia-Idade , Metástase Neoplásica , Projetos Piloto , Estudos Prospectivos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Melanoma Maligno Cutâneo
14.
Gynecol Oncol ; 160(2): 568-578, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33328126

RESUMO

OBJECTIVE: The development of effective cancer treatments depends on the availability of cell lines that faithfully recapitulate the cancer in question. This study definitively re-assigns the histologic identities of two ovarian cancer cell lines, COV434 (originally described as a granulosa cell tumour) and TOV-112D (originally described as grade 3 endometrioid carcinoma), both of which were recently suggested to represent small cell carcinoma of the ovary, hypercalcemic type (SCCOHT), based on their shared gene expression profiles and sensitivity to EZH2 inhibitors. METHODS: For COV434 and TOV-112D, we re-reviewed the original pathology slides and obtained clinical follow-up on the patients, when available, and performed immunohistochemistry for SMARCA4, SMARCA2 and additional diagnostic markers on the original formalin-fixed, paraffin-embedded (FFPE) clinical material, when available. For COV434, we further performed whole exome sequencing and validated SMARCA4 mutations by Sanger sequencing. We studied the growth of the cell lines at baseline and upon re-expression of SMARCA4 in vitro for both cell lines and evaluated the serum calcium levels in vivo upon injection into immunodeficient mice for COV434 cells. RESULTS: The available morphological, immunohistochemical, genetic, and clinical features indicate COV434 is derived from SCCOHT, and TOV-112D is a dedifferentiated carcinoma. Transplantation of COV434 into mice leads to increased serum calcium level. Re-expression of SMARCA4 in either COV434 and TOV-112D cells suppressed their growth dramatically. CONCLUSIONS: COV434 represents a bona fide SCCOHT cell line. TOV-112D is a dedifferentiated ovarian carcinoma cell line.


Assuntos
Carcinoma Epitelial do Ovário/diagnóstico , Carcinoma de Células Pequenas/diagnóstico , Linhagem Celular Tumoral/patologia , Neoplasias Ovarianas/diagnóstico , Animais , Carcinoma Epitelial do Ovário/tratamento farmacológico , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/patologia , Carcinoma de Células Pequenas/tratamento farmacológico , Carcinoma de Células Pequenas/genética , Carcinoma de Células Pequenas/patologia , Desdiferenciação Celular/genética , Linhagem Celular Tumoral/efeitos dos fármacos , DNA Helicases/análise , DNA Helicases/deficiência , DNA Helicases/genética , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Feminino , Perfilação da Expressão Gênica , Humanos , Camundongos , Proteínas Nucleares/análise , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Fatores de Transcrição/análise , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Sequenciamento do Exoma , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Elife ; 92020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33355532

RESUMO

Small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) is a rare and aggressive form of ovarian cancer. SCCOHT tumors have inactivating mutations in SMARCA4 (BRG1), one of the two mutually exclusive ATPases of the SWI/SNF chromatin remodeling complex. To address the role that BRG1 loss plays in SCCOHT tumorigenesis, we performed integrative multi-omic analyses in SCCOHT cell lines +/- BRG1 reexpression. BRG1 reexpression induced a gene and protein signature similar to an epithelial cell and gained chromatin accessibility sites correlated with other epithelial originating TCGA tumors. Gained chromatin accessibility and BRG1 recruited sites were strongly enriched for transcription-factor-binding motifs of AP-1 family members. Furthermore, AP-1 motifs were enriched at the promoters of highly upregulated epithelial genes. Using a dominant-negative AP-1 cell line, we found that both AP-1 DNA-binding activity and BRG1 reexpression are necessary for the gene and protein expression of epithelial genes. Our study demonstrates that BRG1 reexpression drives an epithelial-like gene and protein signature in SCCOHT cells that depends upon by AP-1 activity.


Assuntos
Carcinoma de Células Pequenas/patologia , DNA Helicases/genética , Hipercalcemia/patologia , Proteínas Nucleares/genética , Neoplasias Ovarianas/metabolismo , Fator de Transcrição AP-1/metabolismo , Fatores de Transcrição/genética , Biomarcadores Tumorais/análise , Carcinoma de Células Pequenas/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , DNA Helicases/metabolismo , Feminino , Humanos , Hipercalcemia/genética , Mutação/genética , Proteínas Nucleares/metabolismo , Neoplasias Ovarianas/patologia , Ovário/metabolismo , Ovário/patologia , Fator de Transcrição AP-1/genética , Fatores de Transcrição/metabolismo
16.
Neurooncol Adv ; 2(1): vdaa078, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32743548

RESUMO

BACKGROUND: Tumor heterogeneity underlies resistance and disease progression in glioblastoma (GBM), and tumors most commonly recur adjacent to the surgical resection margins in contrast non-enhancing (NE) regions. To date, no targeted therapies have meaningfully altered overall patient survival in the up-front setting. The aim of this study was to characterize intratumoral heterogeneity in recurrent GBM using bulk samples from primary resection and recurrent samples taken from contrast-enhancing (EN) and contrast NE regions. METHODS: Whole exome and RNA sequencing were performed on matched bulk primary and multiple recurrent EN and NE tumor samples from 16 GBM patients who received standard of care treatment alone or in combination with investigational clinical trial regimens. RESULTS: Private mutations emerge across multi-region sampling in recurrent tumors. Genomic clonal analysis revealed increased enrichment in gene alterations regulating the G2M checkpoint, Kras signaling, Wnt signaling, and DNA repair in recurrent disease. Subsequent functional studies identified augmented PI3K/AKT transcriptional and protein activity throughout progression, validated by phospho-protein levels. Moreover, a mesenchymal transcriptional signature was observed in recurrent EN regions, which differed from the proneural signature in recurrent NE regions. CONCLUSIONS: Subclonal populations observed within bulk resected primary GBMs transcriptionally evolve across tumor recurrence (EN and NE regions) and exhibit aberrant gene expression of common signaling pathways that persist despite standard or targeted therapy. Our findings provide evidence that there are both adaptive and clonally mediated dependencies of GBM on key pathways, such as the PI3K/AKT axis, for survival across recurrences.

17.
PLoS One ; 15(7): e0235705, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32649682

RESUMO

Mutations of the SWI/SNF chromatin remodeling complex occur in 20% of all human cancers, including ovarian cancer. Approximately half of ovarian clear cell carcinomas (OCCC) carry mutations in the SWI/SNF subunit ARID1A, while small cell carcinoma of the ovary hypercalcemic type (SCCOHT) presents with inactivating mutations of the SWI/SNF ATPase SMARCA4 alongside epigenetic silencing of the ATPase SMARCA2. Loss of these ATPases disrupts SWI/SNF chromatin remodeling activity and may also interfere with the function of other histone-modifying enzymes that associate with or are dependent on SWI/SNF activity. One such enzyme is lysine-specific histone demethylase 1 (LSD1/KDM1A), which regulates the chromatin landscape and gene expression by demethylating proteins such as histone H3. Cross-cancer analysis of the TCGA database shows that LSD1 is highly expressed in SWI/SNF-mutated tumors. SCCOHT and OCCC cell lines have shown sensitivity to the reversible LSD1 inhibitor SP-2577 (Seclidemstat), suggesting that SWI/SNF-deficient ovarian cancers are dependent on LSD1 activity. Moreover, it has been shown that inhibition of LSD1 stimulates interferon (IFN)-dependent anti-tumor immunity through induction of endogenous retroviral elements and may thereby overcome resistance to checkpoint blockade. In this study, we investigated the ability of SP-2577 to promote anti-tumor immunity and T-cell infiltration in SCCOHT and OCCC cell lines. We found that SP-2577 stimulated IFN-dependent anti-tumor immunity in SCCOHT and promoted the expression of PD-L1 in both SCCOHT and OCCC. Together, these findings suggest that the combination therapy of SP-2577 with checkpoint inhibitors may induce or augment immunogenic responses of SWI/SNF-mutated ovarian cancers and warrants further investigation.


Assuntos
Antineoplásicos/farmacologia , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Linfócitos T/efeitos dos fármacos , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Carcinoma de Células Pequenas/genética , Carcinoma de Células Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Meios de Cultivo Condicionados/química , Meios de Cultivo Condicionados/farmacologia , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Histonas/genética , Histonas/metabolismo , Humanos , Interferons/farmacologia , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/patologia , Linfócitos T/citologia , Linfócitos T/imunologia , Fatores de Transcrição/metabolismo
18.
J Immunother Cancer ; 8(2)2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32661119

RESUMO

BACKGROUND: The clinical significance of tumor-specific genomic alterations in metastatic renal cell carcinoma (mRCC) is emerging, with several studies suggesting an association between PBRM1 mutations and response with immunotherapy (IO). We sought to determine genomic predictors of differential response to vascular endothelial growth factor-tyrosine kinase inhibitors (VEGF-TKIs) and IO. METHODS: Consecutive patients who underwent genomic profiling were identified; patients receiving either VEGF-TKIs or IO were included. Clinical tumor-normal whole exome sequencing and tumor whole transcriptome sequencing test were performed using a Clinical Laboratory Improvement Amendments (CLIA)-certified assay (Ashion Analytics; Phoenix, Arizona, USA). Genomic findings were compared between patients with clinical benefit (CB; complete/partial response or stable disease for >6 months) and no clinical benefit (NCB) in VEGF-TKI-treated patient cohort and IO-treated patient cohort. RESULTS: 91 patients received genomic profiling and 58 patients received VEGF-TKI and/or IO therapy. 17 received sequenced treatment involving both VEGF-TKI and IO, resulting in 32 patients in the IO cohort and 43 patients in the VEGF-TKI cohort. The most commonly used IO and VEGF-TKIs were nivolumab (66%) and sunitinib (40%). The most frequently detected alterations in the overall cohort were in VHL (64%), PBRM1 (38%), SETD2 (24%), KDM5C (17%) and TERT (12%). TERT promoter mutations were associated with NCB in the IO cohort (p=0.038); transcriptomic analysis revealed multiple differentially regulated pathways downstream of TERT. TERT promoter mutations and PBRM1 mutations were found to be mutually exclusive. While PBRM1 mutations were more prevalent in patients with CB with IO and VEGF-TKIs, no statistically significant association was found. CONCLUSIONS: Our analysis found that TERT promoter mutations may be a negative predictor of outcome with IO and are mutually exclusive with PBRM1 loss-of-function mutations.


Assuntos
Carcinoma de Células Renais/tratamento farmacológico , Genômica/métodos , Imunoterapia/métodos , Neoplasias Renais/tratamento farmacológico , Transcriptoma/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Humanos , Pessoa de Meia-Idade
19.
Cancer Res ; 80(14): 3009-3022, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32366477

RESUMO

HACE1 is an E3 ubiquitin ligase with important roles in tumor biology and tissue homeostasis. Loss or mutation of HACE1 has been associated with the occurrence of a variety of neoplasms, but the underlying mechanisms have not been defined yet. Here, we report that HACE1 is frequently mutated in human lung cancer. In mice, loss of Hace1 led to enhanced progression of KRasG12D -driven lung tumors. Additional ablation of the oncogenic GTPase Rac1 partially reduced progression of Hace1-/- lung tumors. RAC2, a novel ubiquitylation target of HACE1, could compensate for the absence of its homolog RAC1 in Hace1-deficient, but not in HACE1-sufficient tumors. Accordingly, ablation of both Rac1 and Rac2 fully averted the increased progression of KRasG12D -driven lung tumors in Hace1-/- mice. In patients with lung cancer, increased expression of HACE1 correlated with reduced levels of RAC1 and RAC2 and prolonged survival, whereas elevated expression of RAC1 and RAC2 was associated with poor prognosis. This work defines HACE1 as a crucial regulator of the oncogenic activity of RAC-family GTPases in lung cancer development. SIGNIFICANCE: These findings reveal that mutation of the tumor suppressor HACE1 disrupts its role as a regulator of the oncogenic activity of RAC-family GTPases in human and murine lung cancer. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/14/3009/F1.large.jpg.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinogênese/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/prevenção & controle , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas rac de Ligação ao GTP/antagonistas & inibidores , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Animais , Apoptose , Biomarcadores Tumorais/genética , Carcinogênese/patologia , Proliferação de Células , Humanos , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Prognóstico , Células Tumorais Cultivadas , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Proteína RAC2 de Ligação ao GTP
20.
Clin Cancer Res ; 26(16): 4402-4413, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32409304

RESUMO

PURPOSE: Many rare ovarian cancer subtypes, such as small-cell carcinoma of the ovary, hypercalcemic type (SCCOHT), have poor prognosis due to their aggressive nature and resistance to standard platinum- and taxane-based chemotherapy. The development of effective therapeutics has been hindered by the rarity of such tumors. We sought to identify targetable vulnerabilities in rare ovarian cancer subtypes. EXPERIMENTAL DESIGN: We compared the global proteomic landscape of six cases each of endometrioid ovarian cancer (ENOC), clear cell ovarian cancer (CCOC), and SCCOHT to the most common subtype, high-grade serous ovarian cancer (HGSC), to identify potential therapeutic targets. IHC of tissue microarrays was used as validation of arginosuccinate synthase (ASS1) deficiency. The efficacy of arginine-depriving therapeutic ADI-PEG20 was assessed in vitro using cell lines and patient-derived xenograft mouse models representing SCCOHT. RESULTS: Global proteomic analysis identified low ASS1 expression in ENOC, CCOC, and SCCOHT compared with HGSC. Low ASS1 levels were validated through IHC in large patient cohorts. The lowest levels of ASS1 were observed in SCCOHT, where ASS1 was absent in 12 of 31 cases, and expressed in less than 5% of the tumor cells in 9 of 31 cases. ASS1-deficient ovarian cancer cells were sensitive to ADI-PEG20 treatment regardless of subtype in vitro. Furthermore, in two cell line mouse xenograft models and one patient-derived mouse xenograft model of SCCOHT, once-a-week treatment with ADI-PEG20 (30 mg/kg and 15 mg/kg) inhibited tumor growth in vivo. CONCLUSIONS: Preclinical in vitro and in vivo studies identified ADI-PEG20 as a potential therapy for patients with rare ovarian cancers, including SCCOHT.


Assuntos
Argininossuccinato Sintase/genética , Carcinoma de Células Pequenas/tratamento farmacológico , Hidrolases/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Polietilenoglicóis/farmacologia , Animais , Arginina/antagonistas & inibidores , Arginina/genética , Argininossuccinato Sintase/deficiência , Carcinoma de Células Pequenas/genética , Carcinoma de Células Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Camundongos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Ovário/metabolismo , Ovário/patologia , Proteína Relacionada ao Hormônio Paratireóideo/genética , Proteína Relacionada ao Hormônio Paratireóideo/imunologia , Proteômica , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA