Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 135(9): 2925-2941, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35915266

RESUMO

KEY MESSAGE: A genetic framework underpinning salinity tolerance at reproductive stage was revealed by genome-wide SNP markers and major adaptability genes in synthetic-derived wheats, and trait-associated loci were used to predict phenotypes. Using wild relatives of crops to identify genes related to improved productivity and resilience to climate extremes is a prioritized area of crop genetic improvement. High salinity is a widespread crop production constraint, and development of salt-tolerant cultivars is a sustainable solution. We evaluated a panel of 294 wheat accessions comprising synthetic-derived wheat lines (SYN-DERs) and modern bread wheat advanced lines under control and high salinity conditions at two locations. The GWAS analysis revealed a quantitative genetic framework of more than 200 loci with minor effect underlying salinity tolerance at reproductive stage. The significant trait-associated SNPs were used to predict phenotypes using a GBLUP model, and the prediction accuracy (r2) ranged between 0.57 and 0.74. The r2 values for flag leaf weight, days to flowering, biomass, and number of spikes per plant were all above 0.70, validating the phenotypic effects of the loci discovered in this study. Furthermore, the germplasm sets were compared to identify selection sweeps associated with salt tolerance loci in SYN-DERs. Six loci associated with salinity tolerance were found to be differentially selected in the SYN-DERs (12.4 Mb on chromosome (chr)1B, 7.1 Mb on chr2A, 11.2 Mb on chr2D, 200 Mb on chr3D, 600 Mb on chr6B, and 700.9 Mb on chr7B). A total of 228 reported markers and genes, including 17 well-characterized genes, were uncovered using GWAS and EigenGWAS. A linkage disequilibrium (LD) block on chr5A, including the Vrn-A1 gene at 575 Mb and its homeologs on chr5D, were strongly associated with multiple yield-related traits and flowering time under salinity stress conditions. The diversity panel was screened with more than 68 kompetitive allele-specific PCR (KASP) markers of functional genes in wheat, and the pleiotropic effects of superior alleles of Rht-1, TaGASR-A1, and TaCwi-A1 were revealed under salinity stress. To effectively utilize the extensive genetic information obtained from the GWAS analysis, a genetic interaction network was constructed to reveal correlations among the investigated traits. The genetic network data combined with GWAS, selective sweeps, and the functional gene survey provided a quantitative genetic framework for identifying differentially retained loci associated with salinity tolerance in wheat.


Assuntos
Tolerância ao Sal , Triticum , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Tolerância ao Sal/genética , Triticum/genética
2.
Plant J ; 111(5): 1368-1382, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35781899

RESUMO

High temperature stress inhibits photosynthesis and threatens wheat production. One measure of photosynthetic heat tolerance is Tcrit - the critical temperature at which incipient damage to photosystem II (PSII) occurs. This trait could be improved in wheat by exploiting genetic variation and genotype-by-environment interactions (GEI). Flag leaf Tcrit of 54 wheat genotypes was evaluated in 12 thermal environments over 3 years in Australia, and analysed using linear mixed models to assess GEI effects. Nine of the 12 environments had significant genetic effects and highly variable broad-sense heritability (H2 ranged from 0.15 to 0.75). Tcrit GEI was variable, with 55.6% of the genetic variance across environments accounted for by the factor analytic model. Mean daily growth temperature in the month preceding anthesis was the most influential environmental driver of Tcrit GEI, suggesting biochemical, physiological and structural adjustments to temperature requiring different durations to manifest. These changes help protect or repair PSII upon exposure to heat stress, and may improve carbon assimilation under high temperature. To support breeding efforts to improve wheat performance under high temperature, we identified genotypes superior to commercial cultivars commonly grown by farmers, and demonstrated potential for developing genotypes with greater photosynthetic heat tolerance.


Assuntos
Complexo de Proteína do Fotossistema II , Termotolerância , Clorofila , Interação Gene-Ambiente , Fotossíntese/genética , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Melhoramento Vegetal , Triticum/fisiologia
3.
J Exp Bot ; 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35604885

RESUMO

Wheat photosynthetic heat tolerance can be characterized using minimal chlorophyll fluorescence to quantify the critical temperature (Tcrit) above which incipient damage to the photosynthetic machinery occurs. We investigated intraspecies variation and plasticity of wheat Tcrit under elevated temperature in field and controlled-environment experiments, and assessed whether intraspecies variation mirrored interspecific patterns of global heat tolerance. In the field, wheat Tcrit varied diurnally-declining from noon through to sunrise-and increased with phenological development. Under controlled conditions, heat stress (36 °C) drove a rapid (within 2 h) rise in Tcrit that peaked after 3-4 d. The peak in Tcrit indicated an upper limit to PSII heat tolerance. A global dataset [comprising 183 Triticum and wild wheat (Aegilops) species] generated from the current study and a systematic literature review showed that wheat leaf Tcrit varied by up to 20 °C (roughly two-thirds of reported global plant interspecies variation). However, unlike global patterns of interspecies Tcrit variation that have been linked to latitude of genotype origin, intraspecific variation in wheat Tcrit was unrelated to that. Overall, the observed genotypic variation and plasticity of wheat Tcrit suggest that this trait could be useful in high-throughput phenotyping of wheat photosynthetic heat tolerance.

4.
Front Plant Sci ; 13: 788593, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283883

RESUMO

Stripe rust caused by Puccnina striiformis (Pst) is an economically important disease attacking wheat all over the world. Identifying and deploying new genes for Pst resistance is an economical and long-term strategy for controlling Pst. A genome-wide association study (GWAS) using single nucleotide polymorphisms (SNPs) and functional haplotypes were used to identify loci associated with stripe rust resistance in synthetic-derived (SYN-DER) wheats in four environments. In total, 92 quantitative trait nucleotides (QTNs) distributed over 65 different loci were associated with resistance to Pst at seedling and adult plant stages. Nine additional loci were discovered by the linkage disequilibrium-based haplotype-GWAS approach. The durable rust-resistant gene Lr34/Yr18 provided resistance in all four environments, and against all the five Pst races used in this study. The analysis identified several SYN-DER accessions that carried major genes: either Yr24/Yr26 or Yr32. New loci were also identified on chr2B, chr5B, and chr7D, and 14 QTNs and three haplotypes identified on the D-genome possibly carry new alleles of the known genes contributed by the Ae. tauschii founders. We also evaluated eleven different models for genomic prediction of Pst resistance, and a prediction accuracy up to 0.85 was achieved for an adult plant resistance, however, genomic prediction for seedling resistance remained very low. A meta-analysis based on a large number of existing GWAS would enhance the identification of new genes and loci for stripe rust resistance in wheat. The genetic framework elucidated here for stripe rust resistance in SYN-DER identified the novel loci for resistance to Pst assembled in adapted genetic backgrounds.

5.
Theor Appl Genet ; 135(3): 865-882, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34993553

RESUMO

KEY MESSAGE: New genomic regions for high accumulation of 10 minerals were identified. The 1B:1R and 2NS translocations enhanced concentrations of four and two minerals, respectively, in addition to disease resistance. Puccinia species, the causal agents of rust diseases of wheat, have the potential to cause total crop failures due their high evolutionary ability to acquire virulence for resistance genes deployed in commercial cultivars. Hence, the discovery of genetically diverse sources of rust resistance is essential. On the other hand, biofortification of wheat for essential nutrients, such as zinc (Zn) and iron (Fe), is also an objective in wheat improvement programs to tackle micronutrient deficiency. The development of rust-resistant and nutrient-concentrated wheat cultivars would be important for sustainable production and the fight against malnutrition. The HarvestPlus association mapping panel (HPAMP) that included nutrient-dense sources from diverse genetic backgrounds was genotyped using a 90 K Infinium SNP array and 13 markers linked with rust resistance genes. The HPAMP was used for genome-wide association mapping to identify genomic regions underpinning rust resistance and mineral accumulation. Twelve QTL for rust resistance and 53 for concentrations of 10 minerals were identified. Comparison of results from this study with the published QTL information revealed the detection of already known and some putatively new genes/QTL underpinning stripe rust and leaf rust resistance in this panel. Thirty-six new QTL for mineral concentration were identified on 17 chromosomes. Accessions carrying the 1B:1R translocation accumulated higher concentrations of Zn, Fe, Copper (Cu) and sulphur (S). The 2NS segment showed enhanced accumulation of grain Fe and Cu. Fifteen rust-resistant and biofortified accessions were identified for use as donor sources in breeding programs.


Assuntos
Basidiomycota , Triticum , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Genômica , Minerais , Melhoramento Vegetal , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único , Triticum/genética
6.
J Exp Bot ; 73(3): 915-926, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34652413

RESUMO

Warming nights are correlated with declining wheat growth and yield. As a key determinant of plant biomass, respiration consumes O2 as it produces ATP and releases CO2 and is typically reduced under warming to maintain metabolic efficiency. We compared the response of respiratory O2 and CO2 flux to multiple night and day warming treatments in wheat leaves and roots, using one commercial (Mace) and one breeding cultivar grown in controlled environments. We also examined the effect of night warming and a day heatwave on the capacity of the ATP-uncoupled alternative oxidase (AOX) pathway. Under warm nights, plant biomass fell, respiratory CO2 release measured at a common temperature was unchanged (indicating higher rates of CO2 release at prevailing growth temperature), respiratory O2 consumption at a common temperature declined, and AOX pathway capacity increased. The uncoupling of CO2 and O2 exchange and enhanced AOX pathway capacity suggest a reduction in plant energy demand under warm nights (lower O2 consumption), alongside higher rates of CO2 release under prevailing growth temperature (due to a lack of down-regulation of respiratory CO2 release). Less efficient ATP synthesis, teamed with sustained CO2 flux, could thus be driving observed biomass declines under warm nights.


Assuntos
Dióxido de Carbono , Triticum , Aclimatação/fisiologia , Biomassa , Dióxido de Carbono/metabolismo , Melhoramento Vegetal , Folhas de Planta/metabolismo , Temperatura
7.
J Plant Physiol ; 267: 153555, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34739858

RESUMO

Chickpea is a globally important commercial crop and a key source of protein for vegetarian populations. Though chickpea was domesticated at least 3000 years ago, research into abiotic stress tolerance has been limited compared to cereal crops such as wheat. This review investigates the impacts of heat stress on chickpea, focusing on reproductive development. The fertilisation process is particularly sensitive to environmental stress, such as drought and heat that can reduce yields by up to 70%. Current research has largely focused on breeding cultivars that reach maturity faster to avoid stress rather than true thermotolerance and little is known of the impact of heat on cellular processes. This review suggests that there is ample variation within the chickpea gene pool for selective breeding to achieve improved abiotic stress tolerance. Rates of genetic progress will improve once key QTL are identified and the link between thermotolerance and pollen viability confirmed. Other benefits may arise from better understanding of heat shock proteins and molecular chaperones and their role in the protection of reproductive processes.


Assuntos
Cicer , Estresse Fisiológico , Termotolerância , Cicer/genética , Secas , Melhoramento Vegetal , Temperatura
8.
Front Plant Sci ; 12: 735285, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34691111

RESUMO

Increasing the number of environments for phenotyping of crop lines in earlier stages of breeding programs can improve selection accuracy. However, this is often not feasible due to cost. In our study, we investigated a sparse phenotyping method that does not test all entries in all environments, but instead capitalizes on genomic prediction to predict missing phenotypes in additional environments without extra phenotyping expenditure. The breeders' main interest - response to selection - was directly simulated to evaluate the effectiveness of the sparse genomic phenotyping method in a wheat and a rice data set. Whether sparse phenotyping resulted in more selection response depended on the correlations of phenotypes between environments. The sparse phenotyping method consistently showed statistically significant higher responses to selection, compared to complete phenotyping, when the majority of completely phenotyped environments were negatively (wheat) or lowly positively (rice) correlated and any extension environment was highly positively correlated with any of the completely phenotyped environments. When all environments were positively correlated (wheat) or any highly positively correlated environments existed (wheat and rice), sparse phenotyping did not improved response. Our results indicate that genomics-based sparse phenotyping can improve selection response in the middle stages of crop breeding programs.

9.
Front Plant Sci ; 12: 739246, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34707628

RESUMO

Wheat is sensitive to high-temperature stress with crop development significantly impaired depending on the severity and timing of stress. Various physiological mechanisms have been identified as selection targets for heat tolerance; however, the complex nature of the trait and high genotype × temperature interaction limits the selection process. A three-tiered phenotyping strategy was used to overcome this limitation by using wheat genotypes developed from the ancient domesticated wheat, emmer (Triticum dicoccon Schrank), which was considered to have a wide variation for abiotic stress tolerance. A contrasting pair of emmer-based hexaploid lines (classified as tolerant; G1 and susceptible; G2) developed from a backcross to the same recurrent hexaploid parent was chosen based on heat stress responses in the field and was evaluated under controlled glasshouse conditions. The same pair of contrasting genotypes was also subsequently exposed to a short period of elevated temperature (4 days) at anthesis under field conditions using in-field temperature-controlled chambers. The glasshouse and field-based heat chambers produced comparable results. G1 was consistently better adapted to both extended and short periods of heat stress through slow leaf senescence under heat stress, which extended the grain filling period, increased photosynthetic capacity, increased grain filling rates, and resulted in greater kernel weight and higher yield. The use of a combination of phenotyping methods was effective in identifying heat tolerant materials and the mechanisms involved.

10.
Planta ; 254(1): 18, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34196834

RESUMO

MAIN CONCLUSION: The leaf features like trichome density, gradient grooves, and leaf wettability determine the efficiency to capture air moisture for self-irrigation in the wheat plant. Plants in water-scarce environments evolved to capture air moisture for their water needs either directly or indirectly. Structural features like cones, hairs, and grooves assist water capture. The morphology of crops such as wheat can promote self-irrigation under drought. To examine this further, 34 wheat genotypes were characterized for leaf traits in near optimal conditions in the field using a randomized complete block design with 3 replications. An association was found between morphological and physiological traits and yield using simple correlation plots. A core set of nine genotypes was subsequently evaluated for moisture harvesting ability and leaf wettability. Results showed that variation among genotypes exists for fog harvesting ability attributed to structural leaf features. Physiological traits, especially photosynthesis and water use efficiency, were positively associated with yield, negatively correlated with soil moisture at booting, and positively correlated with soil moisture at anthesis. The genotypes with deep to medium leaf grooves and dense hairs on the edges and adaxial surfaces (genotypes 7 and 18) captured the most moisture. This was a function of higher water drop rolling efficiency resulting from lower contact angle hysteresis. These results can be exploited to develop more heat and drought-tolerant crops.


Assuntos
Triticum , Água , Mudança Climática , Secas , Folhas de Planta
11.
Theor Appl Genet ; 134(10): 3339-3350, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34254178

RESUMO

KEY MESSAGE: Genomic selection enabled accurate prediction for the concentration of 13 nutritional element traits in wheat. Wheat biofortification is one of the most sustainable strategies to alleviate mineral deficiency in human diets. Here, we investigated the potential of genomic selection using BayesR and Bayesian ridge regression (BRR) models to predict grain yield (YLD) and the concentration of 13 nutritional elements in grains (B, Ca, Co, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, P and Zn) using a population of 1470 spring wheat lines. The lines were grown in replicated field trials with two times of sowing (TOS) at 3 locations (Narrabri-NSW, all lines; Merredin-WA and Horsham-VIC, 200 core lines). Narrow-sense heritability across environments (locations/TOS) ranged from 0.09 to 0.45. Co, K, Na and Ca showed low to negative genetic correlations with other traits including YLD, while the remaining traits were negatively correlated with YLD. When all environments were included in the reference population, medium to high prediction accuracy was observed for the different traits across environments. BayesR had higher average prediction accuracy for mineral concentrations (r = 0.55) compared to BRR (r = 0.48) across all traits and environments but both methods had comparable accuracies for YLD. We also investigated the utility of one or two locations (reference locations) to predict the remaining location(s), as well as the ability of one TOS to predict the other. Under these scenarios, BayesR and BRR showed comparable performance but with lower prediction accuracy compared to the scenario of predicting reference environments for new lines. Our study demonstrates the potential of genomic selection for enriching wheat grain with nutritional elements in biofortification breeding.


Assuntos
Biofortificação/métodos , Cromossomos de Plantas/genética , Genoma de Planta , Melhoramento Vegetal , Seleção Genética , Triticum/crescimento & desenvolvimento , Triticum/genética , Mapeamento Cromossômico/métodos , Locos de Características Quantitativas
12.
Theor Appl Genet ; 134(7): 2113-2127, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33768282

RESUMO

KEY MESSAGE: Several stable QTL were detected using metaGWAS analysis for different agronomic and quality traits under 26 normal and heat stressed environments. Heat stress, exacerbated by global warming, has a negative influence on wheat production worldwide and climate resilient cultivars can help mitigate these impacts. Selection decisions should therefore depend on multi-environment experiments representing a range of temperatures at critical stages of development. Here, we applied a meta-genome wide association analysis (metaGWAS) approach to detect stable QTL with significant effects across multiple environments. The metaGWAS was applied to 11 traits scored in 26 trials that were sown at optimal or late times of sowing (TOS1 and TOS2, respectively) at five locations. A total of 2571 unique wheat genotypes (13,959 genotypes across all environments) were included and the analysis conducted on TOS1, TOS2 and both times of sowing combined (TOS1&2). The germplasm was genotyped using a 90 k Infinium chip and imputed to exome sequence level, resulting in 341,195 single nucleotide polymorphisms (SNPs). The average accuracy across all imputed SNPs was high (92.4%). The three metaGWAS analyses revealed 107 QTL for the 11 traits, of which 16 were detected in all three analyses and 23 were detected in TOS1&2 only. The remaining QTL were detected in either TOS1 or TOS2 with or without TOS1&2, reflecting the complex interactions between the environments and the detected QTL. Eight QTL were associated with grain yield and seven with multiple traits. The identified QTL provide an important resource for gene enrichment and fine mapping to further understand the mechanisms of gene × environment interaction under both heat stressed and unstressed conditions.


Assuntos
Resposta ao Choque Térmico , Locos de Características Quantitativas , Triticum/genética , Austrália , Grão Comestível/genética , Grão Comestível/fisiologia , Interação Gene-Ambiente , Estudos de Associação Genética , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único , Triticum/fisiologia
13.
Saudi J Biol Sci ; 28(3): 1654-1663, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33732051

RESUMO

Heat stress has been defined as the rise of temperature for a period of time higher than a threshold level, thereby permanently affecting the plant growth and development. Day or night temperature is considered as the major limiting factor for plant growth. Earlier studies reported that night temperature is an important factor in the heat reaction of the plants. Tomato cultivars capable of setting viable fruits under night temperatures above 21 °C are considered as heat-tolerant cultivars. The development of breeding objectives is generally summarized in four points: (a) cultivars with higher yield, (b) disease resistant varieties in the 1970s, (c) long shelf-life in 1980s, and (d) nutritive and taste quality during 1990s. Some unique varieties like the dwarf "Micro-Tom", and the first transgenic tomato (FlavrSavr) were developed through breeding; they were distributed late in the 1980s. High temperature significantly affects seed, pollen viability and root expansion. Researchers have employed different parameters to evaluate the tolerance to heat stress, including membrane thermo stability, floral characteristics (Stigma exertion and antheridia cone splitting), flower number, and fruit yield per plant. Reports on pollen viability and fruit set/plant under heat stress by comparing the pollen growth and tube development in heat-treated and non-heat-stressed conditions are available in literature. The electrical conductivity (EC) have been used to evaluate the tolerance of some tomato cultivars in vitro under heat stress conditions as an indication of cell damage due to electrolyte leakage; they classified the cultivars into three groups: (a) heat tolerant, (b) moderately heat tolerant, and (c) heat sensitive. It is important to determine the range in genetic diversity for heat tolerance in tomatoes. Heat stress experiments under field conditions offer breeders information to identify the potentially heat tolerant germplasm.

14.
Plant Sci ; 304: 110738, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33568290

RESUMO

Wheat is sensitive to heat stress, particularly during grain filling, and this reduces grain yield. Ancestral wheat species, such as emmer wheat (Triticum dicoccon Schrank), represent potential sources of new genetic diversity for traits that may impact wheat responses to heat stress. However, the diversity available in emmer wheat has only been explored superficially. Recently developed emmer derived hexaploid wheat genotypes were evaluated for physiological, phenological and agronomic traits in a multi-environment, multi-season strategy. The emmer-based hexaploid lines were developed from crosses and backcrosses to 9 hexaploid recurrent parents and these genotypes and 7 commercial cultivars were evaluated under two times of sowing (E1 and E2) in the field for three consecutive years (2014-2016). The materials were genotyped using a 90 K SNP platform and these data used to estimate the contribution of emmer wheat to the progeny. Significant phenotypic and genetic variation for traits were observed. Higher temperature during reproductive development and grain filling reduced trait expression. Emmer progeny with greater trait values than their recurrent parents and commercial cultivars in both environments were found. Derivatives with higher physiological trait values yielded well in both environments; as indicated by the clustering of genotypes. The emmer wheat parent contributed between 1 and 43 % of the genome of the emmer-based hexaploid progeny, and progeny with greater emmer contribution had superior trait values in both environments. These results showed a positive effect of direct emmer introgression on wheat performance under heat stress. Mitigation of high temperature stress through the introgression of favorable alleles from wheat close relatives into modern wheat cultivars is possible.


Assuntos
Introgressão Genética/genética , Triticum/genética , Introgressão Genética/fisiologia , Variação Genética , Resposta ao Choque Térmico , Melhoramento Vegetal , Poliploidia , Característica Quantitativa Herdável , Triticum/crescimento & desenvolvimento , Triticum/fisiologia
15.
Theor Appl Genet ; 134(3): 849-858, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33388887

RESUMO

KEY MESSAGE: A new leaf rust resistance gene Lr80 was identified and closely linked markers were developed for its successful pyramiding with other marker-tagged genes to achieve durable control of leaf rust. Common wheat landrace Hango-2, collected in 2006 from the Himalayan area of Hango, District Kinnaur, in Himachal Pradesh, exhibited a very low infection type (IT;) at the seedling stage to all Indian Puccinia triticina (Pt) pathotypes, except the pathotype 5R9-7 which produced IT 3+. Genetic analysis based on Agra Local/Hango-2-derived F3 families indicated monogenic control of leaf rust resistance, and the underlying locus was temporarily named LrH2. Bulked segregant analysis using 303 simple sequence repeat (SSR) markers located LrH2 in the short arm of chromosome 2D. An additional set of 10 chromosome 2DS-specific markers showed polymorphism between the parents and these were mapped on the entire Agra Local/Hango-2 F3 population. LrH2 was flanked by markers cau96 (distally) and barc124 (proximally). The 90 K Infinium SNP array was used to identify SNP markers linked with LrH2. Markers KASP_17425 and KASP_17148 showed association with LrH2. Comparison of seedling leaf rust response data and marker locations across different maps demonstrated the uniqueness of LrH2 and it was formally named Lr80. The Lr80-linked markers KASP_17425, KASP_17148 and barc124 amplified alleles/products different to Hango-2 in 82 Australian cultivars indicating their robustness for marker-assisted selection of this gene in wheat breeding programs.


Assuntos
Basidiomycota/fisiologia , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Doenças das Plantas/genética , Proteínas de Plantas/genética , Triticum/genética , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Resistência à Doença/imunologia , Ligação Genética , Marcadores Genéticos , Doenças das Plantas/microbiologia , Triticum/imunologia , Triticum/microbiologia
16.
Funct Plant Biol ; 48(5): 503-514, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33444526

RESUMO

Periods of high temperature and an expected increase in atmospheric CO2 concentration as a result of global climate change are major threats to wheat (Triticum aestivum L.) production. Developing heat-tolerant wheat cultivars demands improved understanding of the impacts of high temperature and elevated CO2 on plant growth and development. This research investigated the interactive effects of heat stress and CO2 concentration on pollen viability and its relationship to grain formation and yield of wheat in greenhouse conditions. Nineteen wheat genotypes and a current cultivar, Suntop, were heat stressed at either meiosis or anthesis at ambient (400 µL L-1) or elevated (800 µL L-1) CO2. Elevated CO2 and heat stress at meiosis reduced pollen viability, spikelet number and grain yield per spike; however, increased tillering at the elevated CO2 level helped to minimise yield loss. Both heat-tolerant genotypes (e.g. genotype 1, 2, 10 or 12) and heat-sensitive genotypes (e.g. genotype 6 or 9) were identified and response related to pollen sensitivity and subsequent impacts on grain yield and yield components were characterised. A high-throughput protocol for screening wheat for heat stress response at elevated CO2 was established and meiosis was the most sensitive stage, affecting pollen viability, grain formation and yield.


Assuntos
Dióxido de Carbono , Triticum , Grão Comestível , Resposta ao Choque Térmico/genética , Pólen , Triticum/genética
17.
Mol Breed ; 41(4): 29, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37309354

RESUMO

Heat stress tolerance in plants is a complex trait controlled by multiple genes of minor effect which are influenced by the environment and this makes breeding and selection complicated. Emmer wheat (Triticum dicoccon Schrank) carries valuable diversity that can be used to improve the heat tolerance of modern bread wheat. A diverse set of emmer-based genotypes was developed by crossing emmer wheat with hexaploid wheat. These materials, along with their hexaploid recurrent parents and commercial cultivars, were evaluated at optimum (E1) and heat stressed (E2) sowing times in the field for three consecutive years (2014-2016). The material was genotyped using the Infinium iSelect SNP 90K SNP Assay. The phenotypic data were combined across years within each sowing time and best linear unbiased estimators calculated for each genotype in each environment. These estimates were used for GWAS analysis. Significant phenotypic and genotypic variation was observed for all traits. A total of 125 and 142 marker-trait associations (MTAs) were identified in E1 and E2, respectively. The highest number of MTAs were observed on the A genome (106), followed by the B (105) and D (56) genomes. MTAs with pleiotropic effects within and across the environments were observed. Many of the MTAs found were reported previously for various traits, and a few significant MTAs under heat stress were new and linked to emmer genome. Genomic regions identified on chromosomes 2B and 3A had a significant positive impact on grain yield under stress with a 7% allelic effect. Genomic regions on chromosomes 1A and 4B contributed 11% and 9% of the variation for thousand kernel weight (TKW) under heat stress respectively. Following fine mapping, these regions could be used for marker-assisted selection to improve heat tolerance in wheat. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01222-3.

18.
Genome ; 64(1): 29-38, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33002386

RESUMO

Cereal rye and its wild forms are important sources of genetic diversity for wheat breeding due to their resistances to biotic and abiotic stresses. Secale strictum subsp. anatolicum (Boiss.) K. Hammer (SSA) is a weedy relative of cultivated rye, S. cereale. Meiotic chromosome pairing in F1 hybrids of SSA and S. cereale reveals strong genomic affinity between the two genomes. A study of the transferability of S. cereale sequence-based markers to SSA and hexaploid triticale demonstrated their applicability for tracing SSA chromatin in wheat. The transferability of the markers was over 80% from homoeologous groups 1, 2, and 3, and greater than 70% from groups 4 to 7. This study focused on the generation and molecular and cytogenetic characterization of wheat-SSA alien derivatives. Twelve were identified using combinations of non-denaturing fluorescence in situ hybridization (ND-FISH), genomic in situ hybridization (GISH), and molecular marker analysis. All SSA chromosomes, except 3Ra and 6Ra, were transferred to wheat either in the form of monosomic additions (MA), mono-telosomic additions (MtA), double-mono-telosomic additions (dMtA), or double-monosomic additions (dMA). The germplasm developed in this study will help to enhance the genetic base of wheat and facilitate molecular breeding of wheat and triticale.


Assuntos
Melhoramento Vegetal , Secale/genética , Triticale/genética , Triticum/genética , Cromossomos de Plantas , Análise Citogenética , Resistência à Doença/genética , Genômica , Hibridização Genética , Hibridização in Situ Fluorescente , Cariótipo , Doenças das Plantas/genética
19.
Plant Dis ; 105(3): 636-642, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32852254

RESUMO

The pathogen Uromyces viciae-fabae causes rust (a fungal disease) on faba bean (Vicia faba). This disease limits faba bean production in Africa, Asia, Europe, and Australia. The development of resistant cultivars to U. viciae-fabae is the optimal solution for sustainable disease management. However, unknown virulence in Australian U. viciae-fabae populations has confounded resistance breeding. This study examined differences in virulence among Australian U. viciae-fabae isolates collected from various locations and established a differential set of faba bean genotypes. Ten rust isolates were collected from the major faba bean growing regions in Australia and single spore cultures produced. These cultures were subsequently used for assessing virulence on 40 diverse faba bean genotypes. Based on the host-pathogen interactions, 12 putative host genotypes were identified as a differential set. A nomenclature system was subsequently developed using the binary pathotype naming system. Based upon host-pathogen interactions, nine virulence patterns were detected, and the isolates were named using the new nomenclature. We report characterization and naming of U. viciae-fabae pathotypes using differential genotypes in Australia. This differential set will help identify and track the evolution of new virulence in pathogen population and will assist pyramiding of rust resistance genes.


Assuntos
Vicia faba , Ásia , Austrália , Basidiomycota , Europa (Continente) , Melhoramento Vegetal , Doenças das Plantas
20.
Plant Cell Environ ; 44(7): 2331-2346, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33283881

RESUMO

Climate change and future warming will significantly affect crop yield. The capacity of crops to dynamically adjust physiological processes (i.e., acclimate) to warming might improve overall performance. Understanding and quantifying the degree of acclimation in field crops could ensure better parameterization of crop and Earth System models and predictions of crop performance. We hypothesized that for field-grown wheat, when measured at a common temperature (25°C), crops grown under warmer conditions would exhibit acclimation, leading to enhanced crop performance and yield. Acclimation was defined as (a) decreased rates of net photosynthesis at 25°C (A25 ) coupled with lower maximum carboxylation capacity (Vcmax25 ), (b) reduced leaf dark respiration at 25°C (both in terms of O2 consumption Rdark _O225 and CO2 efflux Rdark _CO225 ) and (c) lower Rdark _CO225 to Vcmax25 ratio. Field experiments were conducted over two seasons with 20 wheat genotypes, sown at three different planting dates, to test these hypotheses. Leaf-level CO2 -based traits (A25 , Rdark _CO225 and Vcmax25 ) did not show the classic acclimation responses that we hypothesized; by contrast, the hypothesized changes in Rdark_ O2 were observed. These findings have implications for predictive crop models that assume similar temperature response among these physiological processes and for predictions of crop performance in a future warmer world.


Assuntos
Aclimatação/fisiologia , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Triticum/fisiologia , Dióxido de Carbono/metabolismo , Genótipo , Aquecimento Global , Oxigênio/metabolismo , Sementes/crescimento & desenvolvimento , Temperatura , Triticum/genética , Vitória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA