Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dev Med Child Neurol ; 66(4): 523-530, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37679938

RESUMO

AIM: To quantify the cervicomedullary motor evoked potentials (CMEPs) at the cervical spinal level in adults with cerebral palsy (CP) and determine if altered CMEPs are linked with upper-extremity motor function in this population. METHOD: This cross-sectional study consisted of a cohort of adults with CP (n = 15; mean age = 33 years 5 months [SD = 11 years 8 months]); Manual Ability Classification System levels I-IV) and neurotypical controls (n = 18; mean age = 30 years 10 months [SD = 10 years 4 months]), who were recruited to participate at an academic medical center. Adults with CP and typical adults (controls) were stimulated at the cervicomedullary junction to assess CMEPs at the cervical spinal cord level. Upper-extremity motor function was quantified using the Box and Blocks and Purdue Pegboard tests, self-reported upper-extremity function (UEF), and assessments of selective motor control. RESULTS: At higher stimulation levels, the contralateral CMEP responses of adults with CP were different from typical adults (p = 0.032). Reduced CMEP was correlated with reduced upper-limb function, including worse performance on the Box and Blocks (rho = 0.625, p = 0.025) and Purdue Pegboard tests (rho = 0.701, p = 0.010), lower self-reported UEF (rho = 0.761, p = 0.009), and overall selective motor control (rho = 0.731, p = 0.007). INTERPRETATION: Changes in the activation of spinal motoneurons through corticospinal pathways may have an important role in the altered upper-extremity motor function of individuals with CP.


Assuntos
Paralisia Cerebral , Tratos Piramidais , Adulto , Humanos , Músculo Esquelético , Estudos Transversais , Extremidade Superior , Potencial Evocado Motor/fisiologia
2.
Neuroscience ; 536: 92-103, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-37996052

RESUMO

Emerging evidence indicates that aberrations in sensorimotor cortical oscillations likely play a key role in uncharacteristic motor actions seen in cerebral palsy. This interpretation is largely centered on the assumption that the aberrant cortical oscillations primarily reflect the motor aspects, with less consideration of possible higher-order cognitive connections. To directly probe this view, we examined the impact of cognitive interference on the sensorimotor cortical oscillations seen in persons with cerebral palsy using magnetoencephalography. Persons with cerebral palsy (N = 26, 9-47 years old) and controls (N = 46, 11-49 years) underwent magnetoencephalographic imaging while completing an arrow-based version of the Eriksen flanker task. Structural equation modeling was used to evaluate the relationship between the extent of interference generated by the flanker task and the strength of the sensorimotor cortical oscillations and motor performance. Our results indicated that the impact of cognitive interference on beta and gamma oscillations moderated the interference effect on reaction times in persons with cerebral palsy, above and beyond that seen in controls. Overall, these findings suggest that alterations in sensorimotor oscillatory activity in those with cerebral palsy at least partly reflects top-down control influences on the motor system. Thus, suppression of distracting stimuli should be a consideration when evaluating altered motor actions in cerebral palsy.


Assuntos
Paralisia Cerebral , Córtex Sensório-Motor , Humanos , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Magnetoencefalografia/métodos , Tempo de Reação
3.
J Clin Neurosci ; 117: 114-119, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37801875

RESUMO

BACKGROUND: Persons with cerebral palsy (CP) have impaired mobility that has been attributed to changes in structure and function within the nervous system. The brainstem is a region that plays a critical role in mobility by connecting the cortex and cerebellum to the spinal cord, yet this region has been largely unstudied in persons with CP. RESEARCH QUESTION: We used high-resolution structural MRI and biomechanical analyses to examine whether the volume of the whole brainstem and its constituent elements are altered in CP and if these alterations relate to the mobility impairments within this population. METHODS: A cohort study was conducted to assess the volume of the whole brainstem, pons, midbrain, medulla, and superior cerebellar peduncle in a cohort of persons with CP (N = 26; Age = 16.3 ± 1.0 years; GMFCS levels I-IV, Females = 12) and a cohort of neurotypical (NT) controls (N = 38; Age = 14.3 ± 0.4 years, Females = 14) using structural MR imaging of the brainstem. Outside the scanner, a digital mat was used to quantify the spatiotemporal gait biomechanics of these individuals. RESULTS: We found a significant decrease in volume of the total brainstem, midbrain, and pons in persons with CP in comparison to the NT controls. Furthermore, we found that the altered volumes were related to reduced gait velocity and step length. SIGNIFICANCE: The structural changes in the brainstems of persons with CP may contribute to the mobility impairments that are ubiquitous within this population.


Assuntos
Paralisia Cerebral , Substância Branca , Feminino , Humanos , Adolescente , Paralisia Cerebral/complicações , Paralisia Cerebral/diagnóstico por imagem , Estudos de Coortes , Tronco Encefálico/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
4.
J Parkinsons Dis ; 13(6): 917-935, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37522216

RESUMO

BACKGROUND: Subthalamic nucleus deep brain stimulation (STN-DBS) improves intensive aspects of movement (velocity) in people with Parkinson's disease (PD) but impairs the more cognitively demanding coordinative aspects of movement (error). We extended these findings by evaluating STN-DBS induced changes in intensive and coordinative aspects of movement during a memory-guided reaching task with varying retention delays. OBJECTIVE: We evaluated the effect of STN-DBS on motor control during a memory-guided reaching task with short and long retention delays in participants with PD and compared performance to healthy controls (HC). METHODS: Eleven participants with PD completed the motor section of the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS III) and performed a memory-guided reaching task under four different STN-DBS conditions (DBS-OFF, DBS-RIGHT, DBS-LEFT, and DBS-BOTH) and two retention delays (0.5 s and 5 s). An additional 13 HC completed the memory-guided reaching task. RESULTS: Unilateral and bilateral STN-DBS improved the MDS-UPDRS III scores. In the memory-guided reaching task, both unilateral and bilateral STN-DBS increased the intensive aspects of movement (amplitude and velocity) in the direction toward HC but impaired coordinative aspects of movement (error) away from the HC. Furthermore, movement time was decreased but reaction time was unaffected by STN-DBS. Shorter retention delays increased amplitude and velocity, decreased movement times, and decreased error, but increased reaction times in the participants with PD. There were no interactions between STN-DBS condition and retention delay. CONCLUSION: STN-DBS may affect cognitive-motor functioning by altering activity throughout cortico-basal ganglia networks and the oscillatory activity subserving them.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Núcleo Subtalâmico/fisiologia , Movimento/fisiologia , Cognição , Resultado do Tratamento
5.
Front Neurol ; 14: 1163964, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37521295

RESUMO

Introduction: Cerebral Palsy (CP) is the most common neurodevelopmental motor disability, resulting in life-long sensory, perception and motor impairments. Moreover, these impairments appear to drastically worsen as the population with CP transitions from adolescents to adulthood, although the underlying neurophysiological mechanisms remain poorly understood. Methods: We began to address this knowledge gap by utilizing magnetoencephalographic (MEG) brain imaging to study how the amplitude of spontaneous cortical activity (i.e., resting state) is altered during this transition period in a cohort of 38 individuals with spastic diplegic CP (Age range = 9.80-47.50 years, 20 females) and 67 neurotypical controls (NT) (Age range = 9.08-49.40 years, Females = 27). MEG data from a five-minute eyes closed resting-state paradigm were source imaged, and the power within the delta (2-4 Hz), theta (5-7 Hz), alpha (8-12 Hz), beta (15-29 Hz), and gamma (30-59 Hz) frequency bands were computed. Results: For both groups, the delta and theta spontaneous power decreased in the bilateral temporoparietal and superior parietal regions with age, while alpha, beta, and gamma band spontaneous power increased in temporoparietal, frontoparietal and premotor regions with age. We also found a significant group x age interaction, such that participants with CP demonstrated significantly less age-related increases in the spontaneous beta activity in the bilateral sensorimotor cortices compared to NT controls. Discussion: Overall, these results demonstrate that the spontaneous neural activity in individuals with CP has an altered trajectory when transitioning from adolescents to adulthood. We suggest that these differences in spontaneous cortical activity may play a critical role in the aberrant motor actions seen in this patient group, and may provide a neurophysiological marker for assessing the effectiveness of current treatment strategies that are directed at improving the mobility and sensorimotor impairments seen in individuals with CP.

6.
Res Sq ; 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36824764

RESUMO

Persons with cerebral palsy (CP) have impaired mobility that has been attributed to changes in structure and function within the nervous system. The brainstem is a region that plays a critical role in locomotion by connecting the cortex and cerebellum to the spinal cord, yet this region has been largely unstudied in persons with CP. The objective of this investigation was to use high-resolution structural MRI and biomechanical analyses to examine whether the volume of the whole brainstem and its constituent elements are altered in CP, and if these alterations relate to the mobility impairments within this population. We assessed the volume of the pons, midbrain, medulla, and superior cerebellar peduncle (SCP) in a cohort of persons with CP (N = 26; Age = 16.3 ± 1.0 yrs; GMFCS levels I-IV, Females = 12) and a cohort of neurotypical (NT) controls (N = 38; Age = 14.3 ± 0.4 yrs, Females = 14) using structural MR imaging of the brainstem. Outside the scanner, a digital mat was used to quantify the spatiotemporal gait biomechanics of these individuals. Our MRI results revealed that there was a significant decrease in volume of the total brainstem, midbrain, and pons in persons with CP in comparison to the NT controls. Furthermore, we found that the altered volumes were related to reduced gait velocity and step length. These results suggest that there are structural changes in the brainstems of persons with CP that may contribute to the mobility impairments that are ubiquitous within this population.

7.
Clin Neurophysiol ; 148: 9-16, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36773504

RESUMO

OBJECTIVE: Cerebral palsy (CP) is associated with upper extremity motor impairments that are largely assumed to arise from alterations in the supraspinal networks. The objective of this study was to determine if post-activation depression of the spinal H-reflexes is altered in adults with CP and connected with altered upper extremity function. METHODS: The post-activation depression of the flexor carpi radialis (FCR) H-reflex of adults with CP and healthy adults (HA) controls were assessed by 1) a 1 Hz continuous single-pulse stimulus train and 2) 0.11 Hz / 1 Hz paired-pulse stimuli. Secondarily, we measured the maximum key grip force and the box and blocks assessment of manual dexterity. RESULTS: Our results revealed that adults with CP had reduced post-activation depression of the FCR H-reflex during the stimulus train and the paired pulse protocol. A greater reduction in H-reflex post-activation depression was connected to lower manual dexterity and weaker grip forces. CONCLUSIONS: Our results indicate that the post-activation depression of the upper extremity spinal H-reflex pathways is altered in adults with CP and possibly linked with their uncharacteristic upper extremity motor performance. Alterations in the spinal networks may also play a significant role in the altered motor control of adults with CP. SIGNIFICANCE: Our results identify spinal H-reflex modulation as a possible locus for hand motor control in CP.


Assuntos
Paralisia Cerebral , Reflexo H , Humanos , Adulto , Reflexo H/fisiologia , Medula Espinal/fisiologia , Extremidade Superior , Músculo Esquelético
8.
Neuroscience ; 515: 53-61, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36796750

RESUMO

There are numerous clinical reports that youth with cerebral palsy (CP) have proprioceptive, stereognosis and tactile discrimination deficits. The growing consensus is that the altered perceptions in this population are attributable to aberrant somatosensory cortical activity seen during stimulus processing. It has been inferred from these results that youth with CP likely do not adequately process ongoing sensory feedback during motor performance. However, this conjecture has not been tested. Herein, we address this knowledge gap using magnetoencephalographic (MEG) brain imaging by applying electrical stimulation to the median nerve of youth with CP (N = 15, Age = 15.8 ± 0.83 yrs, Males = 12, MACS levels I-III) and neurotypical (NT) controls (N = 18, Age = 14.1 ± 2.4 yrs, Males = 9) while at rest (i.e., passive) and during a haptic exploration task. The results illustrated that the somatosensory cortical activity was reduced in the group with CP compared to controls during the passive and haptic conditions. Furthermore, the strength of the somatosensory cortical responses during the passive condition were positively associated with the strength of somatosensory cortical responses during the haptic condition (r = 0.75, P = 0.004). This indicates that the aberrant somatosensory cortical responses seen in youth with CP during rest are a good predictor of the extent of somatosensory cortical dysfunction during the performance of motor actions. These data provide novel evidence that aberrations in somatosensory cortical function in youth with CP likely contribute to the difficulties in sensorimotor integration and the ability to effectively plan and execute motor actions.


Assuntos
Paralisia Cerebral , Masculino , Humanos , Adolescente , Criança , Paralisia Cerebral/complicações , Tecnologia Háptica , Córtex Somatossensorial , Magnetoencefalografia , Tato
9.
Front Neurol ; 13: 930303, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36016542

RESUMO

Although most neurophysiological studies of persons with cerebral palsy (CP) have been focused on supraspinal networks, recent evidence points toward the spinal cord as a central contributor to their motor impairments. However, it is unclear if alterations in the spinal pathways are also linked to deficits in the sensory processing observed clinically. This investigation aimed to begin to address this knowledge gap by evaluating the flexor carpi radialis (FCR) H-reflex in adults with CP and neurotypical (NT) controls while at rest and during an isometric wrist flexion task. The maximal H-wave (Hmax) and M-wave (Mmax) at rest were calculated and utilized to compute Hmax/Mmax ratios (H:M ratios). Secondarily, the facilitation of the H-wave was measured while producing an isometric, voluntary wrist flexion contraction (i.e., active condition). Finally, a wrist position sense test was used to quantify the level of joint position sense. These results revealed that the adults with CP had a lower H:M ratio compared with the NT controls while at rest. The adults with CP were also unable to facilitate their H-reflexes with voluntary contraction and had greater position sense errors compared with the controls. Further, these results showed that the adults with CP that had greater wrist position sense errors tended to have a lower H:M ratio at rest. Overall, these findings highlight that aberration in the spinal cord pathways of adults with CP might play a role in the sensory processing deficiencies observed in adults with CP.

10.
J Physiol ; 600(15): 3537-3548, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35723200

RESUMO

There are numerous clinical reports showing that persons with cerebral palsy (CP) have proprioceptive, stereognosis, and tactile discrimination deficits. The current consensus is that these altered perceptions are attributable to aberrant somatosensory cortical activity. It has been inferred from these data that persons with CP do not adequately process ongoing sensory feedback during motor actions, which accentuates the extent of their mobility impairments. However, this hypothesis has yet to be directly tested. We used magnetoencephalographic brain imaging to address this knowledge gap by quantifying the somatosensory dynamics evoked by applying electrical stimulation to the tibial nerve in 22 persons with CP and 25 neurotypical controls at rest and during an ankle plantarflexion isometric force motor task. We also quantified the spatiotemporal gait biomechanics of participants outside the scanner. Consistent with the literature, our results confirmed that the strength of somatosensory cortical activity was weaker in the persons with CP compared to the neurotypical controls. Our results also showed that the strength of the somatosensory cortical responses were significantly weaker during the isometric ankle force task than at rest. Most importantly, our results showed that the strength of somatosensory cortical activity during the ankle plantarflexion force production task mediated the relationship between somatosensory cortical activity at rest and both walking velocity and step length. These results suggest that youth with CP have aberrant somatosensory cortical activity during isometric force generation, which ultimately contributes to the extent of mobility impairments seen in this patient population. KEY POINTS: Persons with cerebral palsy have reduced somatosensory cortical responses at rest and during movement. The somatosensory cortical responses during movement mediate the relationship between the somatosensory cortical responses at rest and mobility. Persons with cerebral palsy may have altered sensorimotor feedback that ultimately contributes to impaired mobility.


Assuntos
Paralisia Cerebral , Adolescente , Potenciais Somatossensoriais Evocados/fisiologia , Humanos , Magnetoencefalografia , Movimento/fisiologia , Córtex Somatossensorial/fisiologia
11.
Brain Sci ; 12(4)2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35447966

RESUMO

Brain-derived neurotrophic factor (BDNF) plays a critical role in the capacity for neuroplastic change. A single nucleotide polymorphism of the BDNF gene is well known to alter the activity-dependent release of the protein and may impact the capacity for neuroplastic change. Numerous studies have shown altered sensorimotor beta event-related desynchronization (ERD) responses in youth with cerebral palsy (CP), which is thought to be directly related to motor planning. The objective of the current investigation was to use magnetoencephalography (MEG) to evaluate whether the BDNF genotype affects the strength of the sensorimotor beta ERD seen in youth with CP while youth with CP performed a leg isometric target matching task. In addition, we collected saliva samples and used polymerase chain reaction (PCR) amplification to determine the status of the amino acid fragment containing codon 66 of the BDNF gene. Our genotyping results identified that 25% of the youth with CP had a Val66Met or Met66Met polymorphism at codon 66 of the BDNF gene. Furthermore, we identified that the beta ERD was stronger in youth with CP who had the Val66Met or Met66Met polymorphism in comparison to those without the polymorphism (p = 0.042). Overall, these novel findings suggest that a polymorphism at the BDNF gene may alter sensorimotor cortical oscillations in youth with CP.

12.
Brain Commun ; 4(2): fcac087, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35441137

RESUMO

Cerebral palsy is the most common paediatric neurological disorder and results in extensive impairment to the sensorimotor system. However, these individuals also experience increased pain perception, resulting in decreased quality of life. In the present study, we utilized magnetoencephalographic brain imaging to examine whether alterations in spontaneous neural activity predict the level of pain experienced in a cohort of 38 individuals with spastic diplegic cerebral palsy and 67 neurotypical controls. Participants completed 5 min of an eyes closed resting-state paradigm while undergoing a magnetoencephalography recording. The magnetoencephalographic data were then source imaged, and the power within the delta (2-4 Hz), theta (5-7 Hz), alpha (8-12 Hz), beta (15-29 Hz), low gamma (30-59 Hz) and high gamma (60-90 Hz) frequency bands were computed. The resulting power spectral density maps were analysed vertex-wise to identify differences in spontaneous activity between groups. Our findings indicated that spontaneous cortical activity was altered in the participants with cerebral palsy in the delta, alpha, beta, low gamma and high gamma bands across the occipital, frontal and secondary somatosensory cortical areas (all p FWE < 0.05). Furthermore, we also found that the altered beta band spontaneous activity in the secondary somatosensory cortices predicted heightened pain perception in the individuals with cerebral palsy (P = 0.039). Overall, these results demonstrate that spontaneous cortical activity within individuals with cerebral palsy is altered in comparison to their neurotypical peers and may predict increased pain perception in this patient population. Potentially, changes in spontaneous resting-state activity may be utilized to measure the effectiveness of current treatment approaches that are directed at reducing the pain experienced by individuals with cerebral palsy.

13.
Sci Rep ; 12(1): 4807, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35314729

RESUMO

Previous animal models have illustrated that reduced cortical activity in the developing brain has cascading activity-dependent effects on the microstructural organization of the spinal cord. A limited number of studies have attempted to translate these findings to humans with cerebral palsy (CP). Essentially, the aberrations in sensorimotor cortical activity in those with CP could have an adverse effect on the spinal cord microstructure. To investigate this knowledge gap, we utilized magnetoencephalographic (MEG) brain imaging to quantify motor-related oscillatory activity in fourteen adults with CP and sixteen neurotypical (NT) controls. A subset of these participants also underwent cervical-thoracic spinal cord MRI. Our results showed that the strength of the peri-movement beta desynchronization and the post-movement beta rebound were each weaker in the adults with CP relative to the controls, and these weakened responses were associated with poorer task performance. Additionally, our results showed that the strength of the peri-movement beta response was associated with the total cross-sectional area of the spinal cord and the white matter cross-sectional area. Altogether these results suggest that the altered sensorimotor cortical activity seen in CP may result in activity-dependent plastic changes within the spinal cord microstructure, which could ultimately contribute to the sensorimotor deficits seen in this population.


Assuntos
Paralisia Cerebral , Córtex Sensório-Motor , Paralisia Cerebral/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Magnetoencefalografia , Córtex Sensório-Motor/diagnóstico por imagem , Medula Espinal/diagnóstico por imagem
14.
Cereb Cortex ; 32(6): 1286-1294, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34416763

RESUMO

Somatosensory cortical activity is altered in individuals with cerebral palsy (CP). However, previous studies have focused on the lower extremities in children with CP and have given less attention to structural changes that may contribute to these alterations. We used a multimodal neuroimaging approach to investigate the relationship between somatosensory cortical activity and cortical thickness in 17 adults with CP (age = 32.8 ± 9.3 years) and 18 healthy adult controls (age = 30.7 ± 9.8 years). Participants performed a median nerve paired-pulse stimulation paradigm while undergoing magnetoencephalography (MEG) to investigate somatosensory cortical activity and sensory gating. Participants also underwent magnetic resonance imaging to evaluate cortical thickness within the area of the somatosensory cortex that generated the MEG response. We found that the somatosensory responses were attenuated in the adults with CP (P = 0.004). The adults with CP also hypergated the second stimulation (P = 0.030) and had decreased cortical thickness in the somatosensory cortex (P = 0.015). Finally, the strength of the somatosensory response was significantly correlated with the cortical thickness (P = 0.023). These findings demonstrate that the aberrant somatosensory cortical activity in adults with CP extends to the upper extremities and appears to be related to cortical thickness.


Assuntos
Paralisia Cerebral , Magnetoencefalografia , Adulto , Paralisia Cerebral/diagnóstico por imagem , Paralisia Cerebral/patologia , Criança , Humanos , Imageamento por Ressonância Magnética , Magnetoencefalografia/métodos , Neuroimagem , Córtex Somatossensorial/fisiologia , Adulto Jovem
15.
Dev Med Child Neurol ; 63(8): 998-1003, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33719037

RESUMO

AIM: To quantify the microstructural differences in the cervical-thoracic spinal cord of adults with cerebral palsy (CP). METHOD: Magnetic resonance imaging of the proximal spinal cord (C6-T3) was conducted on a cohort of adults with CP (n=13; mean age=31y 11mo, standard deviation [SD] 8y 7mo; range=20y 8mo-47y 6mo; eight females, five males) and population norm adult controls (n=16; mean age=31y 4mo, SD 9y 9mo; range=19y 4mo-49y 5mo; seven females, nine males). The cross-sectional area (CSA) of the spinal cord, gray and white matter, magnetization transfer ratio (MTR), and fractional anisotropy of the cuneatus and corticospinal tracts were calculated. RESULTS: The total spinal cord CSA and proportion of the spinal cord gray matter CSA were significantly decreased in the adults with CP. The corticospinal tracts' MTR was lower in the adults with CP. Individuals that had reduced gray matter also tended to have reduced MTR in their corticospinal tracts (r=0.42, p=0.029) and worse hand dexterity clinical scores (r=0.53, p=0.004). INTERPRETATION: These results show that there are changes in the spinal cord microstructure of adults with CP. Ultimately, these microstructural changes play a role in the extent of the hand sensorimotor deficits seen in adults with CP. What this paper adds Adults with cerebral palsy (CP) have a reduced spinal cord cross-sectional area (CSA). Spinal cord gray matter is reduced in adults with CP. Spinal cord CSA is associated with hand dexterity. Magnetization transfer ratio of corticospinal tracts was lower in adults with CP.


Assuntos
Paralisia Cerebral/diagnóstico por imagem , Medula Espinal/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Adulto Jovem
16.
Cereb Cortex ; 31(7): 3353-3362, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33611348

RESUMO

Dynamically allocating neural resources to salient features or objects within our visual space is fundamental to making rapid and accurate decisions. Impairments in such visuospatial abilities have been consistently documented in the clinical literature on individuals with cerebral palsy (CP), although the underlying neural mechanisms are poorly understood. In this study, we used magnetoencephalography (MEG) and oscillatory analysis methods to examine visuospatial processing in children with CP and demographically matched typically developing (TD) children. Our results indicated robust oscillations in the theta (4-8 Hz), alpha (8-14 Hz), and gamma (64-80 Hz) frequency bands in the occipital cortex of both groups during visuospatial processing. Importantly, the group with CP exhibited weaker cortical oscillations in the theta and gamma frequency bands, as well as slower response times and worse accuracy during task performance compared to the TD children. Furthermore, we found that weaker theta and gamma oscillations were related to greater visuospatial performance deficits across both groups. We propose that the weaker occipital oscillations seen in children with CP may reflect poor bottom-up processing of incoming visual information, which subsequently affects the higher-order visual computations essential for accurate visual perception and integration for decision-making.


Assuntos
Atenção/fisiologia , Ondas Encefálicas/fisiologia , Paralisia Cerebral/fisiopatologia , Lobo Occipital/fisiopatologia , Processamento Espacial/fisiologia , Adolescente , Criança , Feminino , Humanos , Magnetoencefalografia , Masculino
17.
Clin Neurophysiol ; 132(4): 938-945, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33636609

RESUMO

OBJECTIVE: This investigation used magnetoencephalography (MEG) to identify the neurophysiological mechanisms contributing to the altered cognition seen in adults with cerebral palsy (CP). METHODS: Adults with CP (GMFCS levels I-IV) and demographically-matched controls completed a Sternberg-type working memory task during MEG. Secondarily, they completed the National Institutes of Health (NIH) cognitive toolbox. Beamforming was used to image the significant MEG oscillatory responses and the resulting images were examined using statistical parametric mapping to identify cortical activity that differed between groups. RESULTS: Both groups had a left-lateralized decrease in alpha-beta (11-16 Hz) power across the occipital, temporal, and prefrontal cortices during encoding, as well as an increase in alpha (9-13 Hz) power across the occipital cortices during maintenance. The strength of alpha-beta oscillations in the prefrontal cortices were weaker in those with CP during encoding. Weaker alpha-beta oscillation within the prefrontal cortex was associated with poorer performance on the NIH toolbox and a higher GMFCS level. CONCLUSIONS: Alpha-beta aberrations may impact the basic encoding of information in adults with CP, which impacts their overall cognition. Altered alpha-beta oscillation might be connected with gross motor function. SIGNIFICANCE: This experimental work highlights the aberrant alpha-beta during encoding as possible neurophysiological mechanism of the cognitive deficiencies.


Assuntos
Córtex Cerebral/fisiopatologia , Paralisia Cerebral/fisiopatologia , Memória de Curto Prazo/fisiologia , Rede Nervosa/fisiopatologia , Adulto , Paralisia Cerebral/psicologia , Feminino , Humanos , Magnetoencefalografia , Masculino , Testes Neuropsicológicos
18.
J Physiol ; 599(4): 1281-1289, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33296078

RESUMO

KEY POINTS: Individuals with cerebral palsy (CP) have a reduced somatosensory cortical response Somatosensory cortical response strength decreases from adolescence to early adulthood Somatosensory cortical responses in youth with CP are similar to adult controls Individuals with CP may have aberrant maturation of the somatosensory system ABSTRACT: Numerous studies have documented tactile and proprioceptive deficits in children with cerebral palsy (CP) and linked these with weaker somatosensory cortical activity. However, whether such aberrations in somatosensory processing extend and/or progress into adulthood remains poorly understood. In the current study, we used magnetoencephalography (MEG) to investigate the primary somatosensory responses in a sample of individuals with CP (N = 42; age = 9-28 years) and a cohort of healthy controls (N = 23; age range = 11-23 years). Briefly, transient electrical stimulation was applied to the right tibial nerve, and standardized low-resolution brain electromagnetic tomography (sLORETA) was used to image the dynamic somatosensory cortical response. We found that the strength of somatosensory cortical activity within the 112-252 ms time window was significantly reduced in the individuals with CP compared with the healthy controls (HC = 286.53 ± 30.51, 95% CI [226.74, 346.32]; CP = 208.30 ± 19.66,CI [169.77, 246.83], P = 0.0126). These results corroborate previous findings of aberrant somatosensory cortical activity in individuals with CP. Our results also suggest that the somatosensory cortical activity tends to become weaker with age, with a similar rate of neurophysiological change in individuals with CP and healthy controls (P = 0.8790). Visualization of regression models fitted to the data imply that youth with CP may have somatosensory cortical activity similar to adult controls. These findings suggest that some individuals with CP exhibit an aberrant developmental trajectory of their somatosensory system.


Assuntos
Paralisia Cerebral , Adolescente , Adulto , Mapeamento Encefálico , Criança , Estimulação Elétrica , Humanos , Magnetoencefalografia , Córtex Somatossensorial , Tato , Adulto Jovem
19.
Neuroimage Clin ; 27: 102318, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32604019

RESUMO

Despite the growing clinical recognition of visual impairments among people with cerebral palsy (CP), very few studies have evaluated the neurophysiology of the visual circuitry. To this end, the primary aim of this investigation was to use magnetoencephalography and beamforming methods to image the relative change in the alpha-beta and gamma occipital cortical oscillations induced by a spatial grating stimulus (e.g., visual contrast) that was viewed by a cohort of children with CP and typically-developing (TD) children. Our results showed that the high-contrast, visual gratings stimuli induced a decrease in alpha-beta (10 - 20 Hz) activity, and an increase in both low (40 - 56 Hz) and high (60 - 72 Hz) gamma oscillations in the occipital cortices. Compared with the TD children, the strength of the frequency specific cortical oscillations were significantly weaker in the children with CP, suggesting that they had deficient processing of the contrast stimulus. Although CP is largely perceived as a musculoskeletal centric disorder, our results fuel the growing impression that there may also be prominent visual processing deficiencies. These visual processing deficits likely impact the ability to perceive visual changes in the environment.


Assuntos
Paralisia Cerebral , Paralisia Cerebral/complicações , Criança , Cognição , Estudos de Coortes , Humanos , Magnetoencefalografia , Percepção Visual
20.
Sci Rep ; 9(1): 18520, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31811232

RESUMO

Adolescents demonstrate increasing mastery of motor actions with age. One prevailing hypothesis is that maturation of the somatosensory system during adolescence contributes to the improved motor control. However, limited efforts have been made to determine if somatosensory cortical processing is different in adolescents during movement. In this study, we used magnetoencephalographic brain imaging to begin addressing this knowledge gap by applying an electrical stimulation to the tibial nerve as adolescents (Age = 14.8 ± 2.5 yrs.) and adults (Age = 36.8 ± 5.0 yrs.) produced an isometric ankle plantarflexion force, or sat with no motor activity. Our results showed strong somatosensory cortical oscillations for both conditions in the alpha-beta (8-30 Hz) and gamma (38-80 Hz) ranges that occurred immediately after the stimulation (0-125 ms), and a beta (18-26 Hz) oscillatory response shortly thereafter (300-400 ms). Compared with the passive condition, all of these frequency specific cortical oscillations were attenuated while producing the ankle force. The attenuation of the alpha-beta response was greater in adolescents, while the adults had a greater attenuation of the beta response. These results imply that altered attenuation of the somatosensory cortical oscillations might be central to the under-developed somatosensory processing and motor performance characteristics in adolescents.


Assuntos
Desenvolvimento do Adolescente/fisiologia , Potenciais Somatossensoriais Evocados/fisiologia , Movimento/fisiologia , Córtex Somatossensorial/fisiologia , Adolescente , Adulto , Fatores Etários , Ondas Encefálicas/fisiologia , Criança , Estimulação Elétrica , Feminino , Humanos , Magnetoencefalografia , Masculino , Córtex Somatossensorial/diagnóstico por imagem , Nervo Tibial/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA