Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Eur J Pharm Biopharm ; : 114339, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38789061

RESUMO

Peptides, despite their therapeutic potential, face challenges with undesirable pharmacokinetic (PK) properties and biodistribution, including poor oral absorption and cellular uptake, and short plasma elimination half-lives. Lipidation of peptides is a common strategy to improve their physicochemical and PK properties, making them viable drug candidates. For example, the plasma half-life of peptides has been extended via conjugation to lipids that are proposed to promote binding to serum albumin and thus protect against rapid clearance. Recent work has shown that lipid conjugation to oligodeoxynucleotides, polymers and small molecule drugs results in association not only with albumin, but also with lipoproteins, resulting in half-life prolongation and transport from administration sites via the lymphatics. Enhancing delivery into the lymph increases the efficacy of vaccines and therapeutics with lymphatic targets such as immunotherapies. In this study, the plasma PK, lymphatic uptake, and bioavailability of the glucagon-like peptide-1 (GLP-1) receptor agonist peptides, liraglutide (lipidated) and exenatide (non-lipidated), were investigated following subcutaneous (SC) administration to rats. As expected, liraglutide displayed an apparent prolonged plasma half-life (9.1 versus 1 h), delayed peak plasma concentrations and lower bioavailability (∼10 % versus ∼100 %) compared to exenatide after SC administration. The lymphatic uptake of both peptides was relatively low (<0.5 % of the dose) although lymph to plasma concentration ratios were greater than one for several early timepoints suggesting some direct uptake into lymph. The low lymphatic uptake may be due to the nature of the conjugated lipid (a single-chain C16 palmitic acid in liraglutide) but suggests that other peptides with similar lipid conjugations may also have relatively modest lymphatic uptake. If delivery to the lymph is desired, conjugation to more lipophilic moieties with higher albumin and/or lipoprotein binding efficiencies, such as diacylglycerols, may be appropriate.

2.
J Pharm Sci ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582284

RESUMO

Dabigatran etexilate (DABE) is a lipophilic double alkyl ester prodrug of dabigatran (DAB) which is a serine protease inhibitor used clinically as an anticoagulant. Recently, translocation of serine protease enzymes, including trypsin, from the gut into the mesenteric lymph and then blood has been associated with organ failure in acute and critical illnesses (ACIs). Delivery of DABE into mesenteric lymph may thus be an effective strategy to prevent organ failure in ACIs. Most drugs access the mesenteric lymph in low quantities following oral administration, as they are rapidly transported away from the intestine via the blood. Here, we examine the potential to deliver DABE into the mesenteric lymph by promoting association with lymph lipid transport pathways via co-administration with a lipid-based formulation (LBF). A series of self-emulsifying LBFs were designed and tested in vitro for their potential to form stable DABE loaded emulsions and keep DABE solubilised and stable over time in simulated gastrointestinal conditions. The LBFs were found to form fine emulsions with a droplet size of 214 ± 30 nm and DABE was stable in the formulation. The stability of DABE in vitro in simulated intestinal conditions, plasma and lymph samples was also evaluated to ensure stability in collected samples and to evaluate whether the prodrug is likely to release active DAB. Ultimately, a highly uniform and stable self-emulsifying Type III A LBF of DABE was chosen for progression into in vivo studies in male Sprague Dawley rats to confirm the lymphatic uptake and plasma pharmacokinetics. Both in vitro and in vivo in plasma and lymph, DABE was rapidly converted to an intermediate and DAB. The main species present in vivo in both plasma and lymph was DAB and mass transport of DABE and DAB in lymph was minimal (∼0.5 % of dose). Importantly, the concentration of DABE in lymph was substantially (20-176 fold) higher than in plasma, supporting that if the prodrug were stable and did not convert to DAB in the intestine, it would be lymphatically transported. Future studies will therefore focus on optimizing the design of the prodrug and formulation to improve stability during absorption and further promote lymphatic uptake.

3.
Mol Pharm ; 21(5): 2473-2483, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38579335

RESUMO

In recent years, the drainage of fluids, immune cells, antigens, fluorescent tracers, and other solutes from the brain has been demonstrated to occur along lymphatic outflow pathways to the deep cervical lymph nodes in the neck. To the best of our knowledge, no studies have evaluated the lymphatic transport of therapeutics from the brain. The objective of this study was to determine the lymphatic transport of model therapeutics of different molecular weights and lipophilicity from the brain using cervical lymph cannulation and ligation models in rats. To do this, anesthetized Sprague-Dawley rats were cannulated at the carotid artery and cannulated, ligated, or left intact at the cervical lymph duct. Rats were administered 14C-ibuprofen (206.29 g/mol, logP 3.84), 3H-halofantrine HCl (536.89 g/mol, logP 8.06), or 3H-albumin (∼65,000 g/mol) via direct injection into the brain striatum at a rate of 0.5 µL/min over 16 min. Plasma or cervical lymph samples were collected for up to 6-8 h following dosing, and brain and lymph nodes were collected at 6 or 8 h. Samples were subsequently analyzed for radioactivity levels via scintillation counting. For 14C-ibuprofen, plasma concentrations over time (plasma AUC0-6h) were >2 fold higher in lymph-ligated rats than in lymph-intact rats, suggesting that ibuprofen is cleared from the brain primarily via nonlymphatic routes (e.g., across the blood-brain barrier) but that this clearance is influenced by changes in lymphatic flow. For 3H-halofantrine, >73% of the dose was retained at the brain dosing site in lymph-intact and lymph-ligated groups, and plasma AUC0-8h values were low in both groups (<0.3% dose.h/mL), consistent with the high retention in the brain. It was therefore not possible to determine whether halofantrine undergoes lymphatic transport from the brain within the duration of the study. For 3H-albumin, plasma AUC0-8h values were not significantly different between lymph-intact, lymph-ligated, and lymph-cannulated rats. However, >4% of the dose was recovered in cervical lymph over 8 h. Lymph/plasma concentration ratios of 3H-albumin were also very high (up to 53:1). Together, these results indicate that 3H-albumin is transported from the brain not only via lymphatic routes but also via the blood. Similar to other tissues, the lymphatics may thus play a significant role in the transport of macromolecules, including therapeutic proteins, from the brain but are unlikely to be a major transport pathway from the brain for small molecule drugs that are not lipophilic. Our rat cervical lymph cannulation model can be used to quantify the lymphatic drainage of different molecules and factors from the brain.


Assuntos
Encéfalo , Ibuprofeno , Linfonodos , Ratos Sprague-Dawley , Animais , Ratos , Encéfalo/metabolismo , Masculino , Linfonodos/metabolismo , Ibuprofeno/farmacocinética , Ibuprofeno/administração & dosagem , Ibuprofeno/química , Fenantrenos/farmacocinética , Fenantrenos/química , Fenantrenos/administração & dosagem , Transporte Biológico/fisiologia , Albuminas/farmacocinética , Albuminas/metabolismo
4.
J Control Release ; 369: 146-162, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513730

RESUMO

Delivery to peripheral lymphatics can be achieved following interstitial administration of nano-sized delivery systems (nanoparticles, liposomes, dendrimers etc) or molecules that hitchhike on endogenous nano-sized carriers (such as albumin). The published work concerning the hitchhiking approach has mostly focussed on the lymphatic uptake of vaccines conjugated directly to albumin binding moieties (ABMs such as lipids, Evans blue dye derivatives or peptides) and their subsequent trafficking into draining lymph nodes. The mechanisms underpinning access and transport of these constructs into lymph fluid, including potential interaction with other endogenous nanocarriers such as lipoproteins, have largely been ignored. Recently, we described a series of brush polyethylene glycol (PEG) polymers containing end terminal short-chain or medium-chain hydrocarbon tails (1C2 or 1C12, respectively), cholesterol moiety (Cho), or medium-chain or long-chain diacylglycerols (2C12 or 2C18, respectively). We evaluated the association of these materials with albumin and lipoprotein in rat plasma, and their intravenous (IV) and subcutaneous (SC) pharmacokinetic profiles. Here we fully detail the association of this suite of polymers with albumin and lipoproteins in rat lymph, which is expected to facilitate lymph transport of the materials from the SC injection site. Additionally, we characterise the thoracic lymph uptake, tissue and lymph node biodistribution of the lipidated brush PEG polymers following SC administration to thoracic lymph cannulated rats. All polymers had moderate lymphatic uptake in rats following SC dosing with the lymph uptake higher for 1C2-PEG, 2C12-PEG and 2C18-PEG (5.8%, 5.9% and 6.7% dose in lymph, respectively) compared with 1C12-PEG and Cho-PEG (both 1.5% dose in lymph). The enhanced lymph uptake of 1C2-PEG, 2C12-PEG and 2C18-PEG appeared related to their association profile with different lipoproteins. The five polymers displayed different biodistribution patterns in major organs and tissues in mice. All polymers reached immune cells deep within the inguinal lymph nodes of mice following SC dosing. The ability to access these immune cells suggests the potential of the polymers as platforms for the delivery of vaccines and immunotherapies. Future studies will focus on evaluating the lymphatic targeting and therapeutic potential of drug or vaccine-loaded polymers in pre-clinical disease models.


Assuntos
Polietilenoglicóis , Animais , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Distribuição Tecidual , Masculino , Ratos Sprague-Dawley , Lipídeos/química , Linfonodos/metabolismo , Linfa/metabolismo , Camundongos , Ratos , Albuminas/administração & dosagem , Albuminas/farmacocinética , Lipoproteínas/farmacocinética , Lipoproteínas/administração & dosagem , Feminino
5.
Acta Biomater ; 174: 191-205, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38086497

RESUMO

Polymeric prodrugs have been applied to control the delivery of various types of therapeutics. Similarly, conjugation of peptide therapeutics to lipids has been used to prolong systemic exposure. Here, we extend on these two approaches by conjugating brush polyethylene glycol (PEG) polymers with different lipid components including short-chain (1C2) or medium-chain (1C12) monoalkyl hydrocarbon tails, cholesterol (Cho), and diacylglycerols composed of two medium-chain (2C12) or long-chain (2C18) fatty acids. We uniquely evaluate the integration of these lipid-polymers into endogenous lipid trafficking pathways (albumin and lipoproteins) and the impact of lipid conjugation on plasma pharmacokinetics after intravenous (IV) and subcutaneous (SC) dosing to cannulated rats. The IV and SC elimination half-lives of Cho-PEG (13 and 22 h, respectively), 2C12-PEG (11 and 17 h, respectively) and 2C18-PEG (12 h for both) were prolonged compared to 1C2-PEG (3 h for both) and 1C12-PEG (4 h for both). Interestingly, 1C2-PEG and 1C12-PEG had higher SC bioavailability (40 % and 52 %, respectively) compared to Cho-PEG, 2C12-PEG and 2C18-PEG (25 %, 24 % and 23 %, respectively). These differences in pharmacokinetics may be explained by the different association patterns of the polymers with rat serum albumin (RSA), bovine serum albumin (BSA) and lipoproteins. For example, in pooled plasma (from IV pharmacokinetic studies), 2C18-PEG had the highest recovery in the high-density lipoprotein (HDL) fraction. In conclusion, the pharmacokinetics of brush PEG polymers can be tuned via conjugation with different lipids, which can be utilised to tune the elimination half-life, biodistribution and effect of therapeutics for a range of medical applications. STATEMENT OF SIGNIFICANCE: Lipidation of therapeutics such as peptides has been employed to extend their plasma half-life by promoting binding to serum albumin, providing protection against rapid clearance. Here we design and evaluate innovative biomaterials consisting of brush polyethylene glycol polymers conjugated with different lipids. Importantly, we show for the first time that lipidated polymeric materials associate with endogenous lipoprotein trafficking pathways and this, in addition to albumin binding, controls their plasma pharmacokinetics. We find that conjugation to dialkyl lipids and cholesterol leads to higher association with lipid trafficking pathways, and more sustained plasma exposure, compared to conjugation to short and monoalkyl lipids. Our lipidated polymers can thus be utilised as delivery platforms to tune the plasma half-life of various pharmaceuticals.


Assuntos
Polietilenoglicóis , Polímeros , Ratos , Animais , Polietilenoglicóis/farmacologia , Distribuição Tecidual , Meia-Vida , Peptídeos/farmacologia , Lipoproteínas HDL , Colesterol , Soroalbumina Bovina/farmacologia
6.
Diabetes Res Clin Pract ; 207: 111082, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38160735

RESUMO

AIM: This study examined the association between cyclooxygenase-2 inhibitor (COX2i) use and diabetes progression in people with type 2 diabetes. METHODS: We conducted a nation-wide cohort study using an Australian diabetes registry linked to medication dispensing data. We assessed time to diabetes treatment intensification among new users of COX2i compared to mild opioids. Inverse probability of treatment-weighted Cox regression models were used to adjust for age, sex, time since diabetes diagnosis, comorbidities, and socio-economic disadvantage. We conducted several sensitivity analyses, including per-protocol analyses and comparing use of any NSAID to mild opioids. RESULTS: There were 8,071 new users of COX2i and 7,623 of mild opioids with 4,168 diabetes treatment intensifications over a median follow-up of 1.6 years. Use of COX2i was associated with decreased risk of treatment intensification when compared to mild opioids (HR 0.91, 95 %CI 0.85-0.96). The results were not significant in the per-protocol analyses. Use of any NSAID was associated with a lower risk of treatment intensification compared to mild opioids (HR 0.90, 95 %CI 0.85-0.96). CONCLUSIONS: Treatment with COX2i may be associated with a modest decreased risk of diabetes treatment intensification compared to mild opioids. Future clinical studies are required to confirm whether COX2 inhibition has clinically significant benefits for glycaemic control.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Estudos de Coortes , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/farmacologia , Glicemia , Austrália/epidemiologia , Estudos Retrospectivos
7.
Osteoarthr Cartil Open ; 5(3): 100382, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37426293

RESUMO

Objective: To examine the efficacy and safety of topical corticosteroid over 6 weeks in patients with symptomatic hand osteoarthritis. Design: In a randomized, double-blind, placebo-controlled trial, community-based participants with hand osteoarthritis were randomly assigned (1:1) to topical Diprosone OV (betamethasone dipropionate 0.5 â€‹mg/g in optimised vehicle, n=54) or placebo (plain paraffin, n=52) ointment to painful joints 3 times daily for 6 weeks. Primary outcome was pain reduction [assessed by 100 â€‹mm visual analogue scale (VAS)] at 6 weeks. Secondary outcomes included changes in pain and function using the Australian Canadian Osteoarthritis Hand Index (AUSCAN), Functional Index for Hand Osteoarthritis (FIHOA), and Michigan Hand Outcomes Questionnaire (MHQ) at 6 weeks. Adverse events were recorded. Results: Of 106 participants (mean age 64.2 years, 85.9% female), 103 (97.2%) completed the study. Change in VAS at 6 weeks was similar in the Diprosone OV and placebo groups (-19.9 vs. -20.9, adjusted difference 0.6, 95% CI -8.9 to 10.2). There were no significant between-group differences in change in AUSCAN pain [adjusted difference 25.8 (-16.0 to 67.5)], AUSCAN function [21.2 (-55.0 to 97.4)], FIHOA [-0.1 (-1.7 to 1.5)], or MHQ [-1.2 (-6.0 to 3.6)]. Incidence of adverse events was 16.7% in Diprosone OV and 19.2% in placebo group. Conclusions: Topical Diprosone OV ointment, although well-tolerated, was no better than placebo in improving pain or function over 6 weeks in patient with symptomatic hand osteoarthritis. Future studies should consider examining joints with synovitis and whether delivery approaches enhancing transdermal penetration of corticosteroids into joints are effective in hand osteoarthritis. Trial registration: ACTRN 12620000599976. Registered May 22, 2020.

9.
Mol Pharm ; 20(4): 2053-2066, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36945772

RESUMO

Changes to the number, type, and function of immune cells within the joint-draining lymphatics is a major contributor to the progression of inflammatory arthritis. In particular, there is a significant expansion in pathogenic B cells in the joint-draining lymph node (jdLN). These B cells appear to clog the lymphatic sinuses in the lymph node, inhibit lymph flow, and therefore, reduce the clearance of inflammatory fluid and cells from the joint. Taken together, there is potential to treat inflammatory arthritis more effectively, as well as reduce off-target side effects, with localized delivery of B-cell depleting therapies to the jdLNs. We recently reported that joint-draining lymphatic exposure of biologic disease-modifying anti-rheumatic drugs (DMARDs), including the B cell depletion antibody rituximab, is increased in healthy rats following intra-articular (IA) compared to subcutaneous (SC) or intravenous (IV) administration. This suggests that IA administration of B cell depleting antibodies may increase delivery to target cells in the jdLN and increase the effectiveness of B cell depletion compared to standard SC or IV administration. However, whether enhanced local delivery of DMARDs to the jdLN is also achieved after IA injection in the setting of inflammatory arthritis, where there is inflammation in the joint and jdLN B cell expansion is unknown. We, therefore, assessed the lymph node distribution, absorption and plasma pharmacokinetics, and B cell depletion at different sites after IA, SC, or IV administration of a fluorescently labeled mouse anti-CD20 B cell depleting antibody (Cy5-αCD20) in healthy mice compared to mice with collagen-induced arthritis (CIA). The absorption and plasma pharmacokinetics of Cy5-αCD20 appeared unaltered in mice with CIA whereas distribution of Cy5-αCD20 to the jdLNs was generally increased in mice with CIA, regardless of the route of administration. However, IA administration led to greater and more specific exposure to the jdLNs. Consistent with increased Cy5-αCD20 in the jdLNs of CIA compared to healthy mice, there was a greater reduction in jdLN weight and a trend toward greater jdLN B cell depletion at 24 h compared to 4 h after IA compared to SC and IV administration. Taken together, this data supports the potential to improve local efficacy of B cell depletion therapies through a jdLN-directed approach which will enable a reduction in dose and systemic toxicities.


Assuntos
Antirreumáticos , Artrite Experimental , Camundongos , Ratos , Animais , Antirreumáticos/farmacocinética , Injeções Intra-Articulares , Anticorpos/uso terapêutico , Linfonodos
10.
Mol Pharm ; 20(5): 2675-2685, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36996486

RESUMO

Targeted delivery of immunomodulators to the lymphatic system has the potential to enhance therapeutic efficacy by increasing colocalization of drugs with immune targets such as lymphocytes. A triglyceride (TG)-mimetic prodrug strategy has been recently shown to enhance the lymphatic delivery of a model immunomodulator, mycophenolic acid (MPA), via incorporation into the intestinal TG deacylation-reacylation and lymph lipoprotein transport pathways. In the current study, a series of structurally related TG prodrugs of MPA were examined to optimize structure-lymphatic transport relationships for lymph-directing lipid-mimetic prodrugs. MPA was conjugated to the sn-2 position of the glyceride backbone of the prodrugs using linkers of different chain length (5-21 carbons) and the effect of methyl substitutions at the alpha and/or beta carbons to the glyceride end of the linker was examined. Lymphatic transport was assessed in mesenteric lymph duct cannulated rats, and drug exposure in lymph nodes was examined following oral administration to mice. Prodrug stability in simulated intestinal digestive fluid was also evaluated. Prodrugs with straight chain linkers were relatively unstable in simulated intestinal fluid; however, co-administration of lipase inhibitors (JZL184 and orlistat) was able to reduce instability and increase lymphatic transport (2-fold for a prodrug with a 6-carbon spacer, i.e., MPA-C6-TG). Methyl substitutions to the chain resulted in similar trends in improving intestinal stability and lymphatic transport. Medium- to long-chain spacers (C12, C15) between MPA and the glyceride backbone were most effective in promoting lymphatic transport, consistent with increases in lipophilicity. In contrast, short-chain (C6-C10) linkers appeared to be too unstable in the intestine and insufficiently lipophilic to associate with lymph lipid transport pathways, while very long-chain (C18, C21) linkers were also not preferred, likely as a result of increases in molecular weight reducing solubility or permeability. In addition to more effectively promoting drug transport into mesenteric lymph, TG-mimetic prodrugs based on a C12 linker resulted in marked increases (>40 fold) in the exposure of MPA in the mesenteric lymph nodes in mice when compared to administration of MPA alone, suggesting that optimizing prodrug design has the potential to provide benefit in targeting and modulating immune cells.


Assuntos
Pró-Fármacos , Ratos , Camundongos , Animais , Pró-Fármacos/química , Triglicerídeos , Ácido Micofenólico/metabolismo , Linfonodos/metabolismo , Intestinos , Glicerídeos , Fatores Imunológicos/farmacologia , Fatores Imunológicos/metabolismo , Adjuvantes Imunológicos , Administração Oral
11.
Front Pharmacol ; 14: 1111617, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36744256

RESUMO

Background: Fluids, solutes and immune cells have been demonstrated to drain from the brain and surrounding structures to the cervical lymph vessels and nodes in the neck via meningeal lymphatics, nasal lymphatics and/or lymphatic vessels associated with cranial nerves. A method to cannulate the efferent cervical lymph duct for continuous cervical lymph fluid collection in rodents has not been described previously and would assist in evaluating the transport of molecules and immune cells from the head and brain via the lymphatics, as well as changes in lymphatic transport and lymph composition with different physiological challenges or diseases. Aim: To develop a novel method to cannulate and continuously collect lymph fluid from the cervical lymph duct in rats and to analyze the protein, lipid and immune cell composition of the collected cervical lymph fluid. Methods: Male Sprague-Dawley rats were cannulated at the carotid artery with or without cannulation or ligation at the cervical lymph duct. Samples of blood, whole lymph and isolated lipoprotein fractions of lymph were collected and analyzed for lipid and protein composition using commercial kits. Whole lymph samples were centrifuged and isolated pellets were stained and processed for flow cytometry analysis of CD3+, CD4+, CD8a+, CD45R+ (B220) and viable cell populations. Results: Flow rate, phospholipid, triglyceride, cholesterol ester, free cholesterol and protein concentrations in cervical lymph were 0.094 ± 0.014 mL/h, 0.34 ± 0.10, 0.30 ± 0.04, 0.07 ± 0.02, 0.02 ± 0.01 and 16.78 ± 2.06 mg/mL, respectively. Protein was mostly contained within the non-lipoprotein fraction but all lipoprotein types were also present. Flow cytometry analysis of cervical lymph showed that 67.1 ± 7.4% of cells were CD3+/CD4+ T lymphocytes, 5.8 ± 1.6% of cells were CD3+/CD8+ T lymphocytes, and 10.8 ± 4.6% of cells were CD3-/CD45R+ B lymphocytes. The remaining 16.3 ± 4.6% cells were CD3-/CD45- and identified as non-lymphocytes. Conclusion: Our novel cervical lymph cannulation method enables quantitative analysis of the lymphatic transport of immune cells and molecules in the cervical lymph of rats for the first time. This valuable tool will enable more detailed quantitative analysis of changes to cervical lymph composition and transport in health and disease, and could be a valuable resource for discovery of biomarkers or therapeutic targets in future studies.

12.
iScience ; 26(1): 105905, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36691622

RESUMO

Sucrose, the primary circulating sugar in plants, contains equal amounts of fructose and glucose. The latter is the predominant circulating sugar in animals and thus the primary fuel source for various tissue and cell types in the body. Chronic excessive energy intake has, however, emerged as a major driver of obesity and associated pathologies including nonalcoholic fatty liver diseases (NAFLD) and the more severe nonalcoholic steatohepatitis (NASH). Consumption of a high-caloric, western-style diet induces gut dysbiosis and inflammation resulting in leaky gut. Translocation of gut-derived bacterial content promotes hepatic inflammation and ER stress, and when either or both of these are combined with steatosis, it can cause NASH. Here, we review the metabolic links between diet-induced changes in the gut and NASH. Furthermore, therapeutic interventions for the treatment of obesity and liver metabolic diseases are also discussed with a focus on restoring the gut-liver axis.

13.
Pharm Res ; 40(1): 245-263, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36376604

RESUMO

Liposomes are sphere-shaped vesicles that can capture therapeutics either in the outer phospholipid bilayer or inner aqueous core. Liposomes, especially when surface-modified with functional materials, have been used to achieve many benefits in drug delivery, including improving drug solubility, oral bioavailability, pharmacokinetics, and delivery to disease target sites such as cancers. Among the functional materials used to modify the surface of liposomes, the FDA-approved non-ionic surfactant D-alpha-tocopheryl polyethylene glycol succinate (TPGS) is increasingly being applied due to its biocompatibility, lack of toxicity, applicability to various administration routes and ability to enhance solubilization, stability, penetration and overall pharmacokinetics. TPGS decorated liposomes are emerging as a promising drug delivery system for various diseases and are expected to enter the market in the coming years. In this review article, we focus on the multifunctional properties of TPGS-coated liposomes and their beneficial therapeutic applications, including for oral drug delivery, vaccine delivery, ocular administration, and the treatment of various cancers. We also suggest future directions to optimise the manufacture and performance of TPGS liposomes and, thus, the delivery and effect of encapsulated diagnostics and therapeutics.


Assuntos
Lipossomos , Neoplasias , Humanos , Polietilenoglicóis , Sistemas de Liberação de Fármacos por Nanopartículas , Vitamina E , Neoplasias/tratamento farmacológico , alfa-Tocoferol
14.
J Mater Chem B ; 10(48): 9944-9967, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36415922

RESUMO

Synthesis, design, characterization, and application of carbon-based nanostructures (CBNSs) as drug carriers have attracted a great deal of interest over the past half of the century because of their promising chemical, thermal, physical, optical, mechanical, and electrical properties and their structural diversity. CBNSs are well-known in drug delivery applications due to their unique features such as easy cellular uptake, high drug loading ability, and thermal ablation. CBNSs, including carbon nanotubes, fullerenes, nanodiamond, graphene, and carbon quantum dots have been quite broadly examined for drug delivery systems. This review not only summarizes the most recent studies on developing carbon-based nanostructures for drug delivery (e.g. delivery carrier, cancer therapy and bioimaging), but also tries to deal with the challenges and opportunities resulting from the expansion in use of these materials in the realm of drug delivery. This class of nanomaterials requires advanced techniques for synthesis and surface modifications, yet a lot of critical questions such as their toxicity, biodistribution, pharmacokinetics, and fate of CBNSs in biological systems must be answered.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Nanotubos de Carbono , Neoplasias , Humanos , Nanotubos de Carbono/química , Distribuição Tecidual , Técnicas Biossensoriais/métodos , Nanoestruturas/química , Sistemas de Liberação de Medicamentos/métodos , Neoplasias/tratamento farmacológico
15.
Viruses ; 14(11)2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36366514

RESUMO

The repurposing of licenced drugs for use against COVID-19 is one of the most rapid ways to develop new and alternative therapeutic options to manage the ongoing pandemic. Given circa 7817 licenced compounds available from Compounds Australia that can be screened, this paper demonstrates the utility of commercially available ex vivo/3D airway and alveolar tissue models. These models are a closer representation of in vivo studies than in vitro models, but retain the benefits of rapid in vitro screening for drug efficacy. We demonstrate that several existing drugs appear to show anti-SARS-CoV-2 activity against both SARS-CoV-2 Delta and Omicron Variants of Concern in the airway model. In particular, fluvoxamine, as well as aprepitant, everolimus, and sirolimus, has virus reduction efficacy comparable to the current standard of care (remdesivir, molnupiravir, nirmatrelvir). Whilst these results are encouraging, further testing and efficacy studies are required before clinical use can be considered.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Humanos , Pandemias , Pulmão , Antivirais/farmacologia , Antivirais/uso terapêutico
16.
Eur J Pharm Biopharm ; 180: 319-331, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36283633

RESUMO

Dietary lipids, highly lipophilic drugs, antigens and immune cells are transported from the intestine to the mesenteric lymph nodes (MLNs) via mesenteric lymphatic vessels. Recently our lab reported that the mesenteric lymphatic vessels become highly branched and leak lymph to the surrounding mesenteric adipose tissue (MAT) in mice and humans with obesity, promoting insulin resistance. This study aimed to investigate the impact of obesity-associated mesenteric lymph leakage on the trafficking of a dietary lipid (oleic acid), lipophilic drug (cyclosporin A) and antigen (ovalbumin) from the intestine to MLNs. C57BL/6J mice were fed a control fat diet (CFD), or a high fat diet (HFD) for up to 35 weeks leading to obesity and impaired glucose tolerance. 14C-oleic acid, 3H-cyclosporin or Cy5.5-ovalbumin were administered orally, and blood plasma and tissues collected to measure radioactivity or fluorescence levels. The accumulation of 14C-oleic acid, 3H-cyclosporin and Cy5.5-ovalbumin in MAT was significantly increased in HFD compared to CFD fed mice, whereas in the MLNs there was less accumulation (3H-cyclosporin and Cy5.5-ovalbumin) or no significant difference (for 14C-oleic acid). The mass ratio of these molecules in MLNs compared to MAT was thus significantly decreased. Obesity-associated mesentery lymph leakage appears to divert dietary lipids, lipophilic drugs and antigens away from their normal lymphatic trafficking pathways from the intestine to MLNs and instead results in leakage into MAT. This is likely to contribute to known detrimental changes to lipid metabolism, immunotherapy and mucosal immunity in obesity.


Assuntos
Ciclosporinas , Ácido Oleico , Humanos , Camundongos , Animais , Ovalbumina , Ácido Oleico/metabolismo , Camundongos Endogâmicos C57BL , Mesentério/metabolismo , Linfonodos/metabolismo , Obesidade/metabolismo , Intestinos , Ciclosporinas/metabolismo
17.
Int J Mol Sci ; 23(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36233149

RESUMO

SARS-CoV-2 is the cause of the COVID-19 pandemic which has claimed more than 6.5 million lives worldwide, devastating the economy and overwhelming healthcare systems globally. The development of new drug molecules and vaccines has played a critical role in managing the pandemic; however, new variants of concern still pose a significant threat as the current vaccines cannot prevent all infections. This situation calls for the collaboration of biomedical scientists and healthcare workers across the world. Repurposing approved drugs is an effective way of fast-tracking new treatments for recently emerged diseases. To this end, we have assembled and curated a database consisting of 7817 compounds from the Compounds Australia Open Drug collection. We developed a set of eight filters based on indicators of efficacy and safety that were applied sequentially to down-select drugs that showed promise for drug repurposing efforts against SARS-CoV-2. Considerable effort was made to evaluate approximately 14,000 assay data points for SARS-CoV-2 FDA/TGA-approved drugs and provide an average activity score for 3539 compounds. The filtering process identified 12 FDA-approved molecules with established safety profiles that have plausible mechanisms for treating COVID-19 disease. The methodology developed in our study provides a template for prioritising drug candidates that can be repurposed for the safe, efficacious, and cost-effective treatment of COVID-19, long COVID, or any other future disease. We present our database in an easy-to-use interactive interface (CoviRx that was also developed to enable the scientific community to access to the data of over 7000 potential drugs and to implement alternative prioritisation and down-selection strategies.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Antivirais/farmacologia , Antivirais/uso terapêutico , COVID-19/complicações , Reposicionamento de Medicamentos , Humanos , Pandemias , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA