Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(5): 2419-2431, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38226500

RESUMO

The unique properties of few-layered graphene (FLG) make it interesting for a variety of applications, including biomedical applications, such as tissue engineering and drug delivery. Although different studies focus on applications in the central nervous system, its interaction with the peripheral nervous system has been so far overlooked. Here, we investigated the effects of exposure to colloidal dispersions of FLG on the sensory neurons of the rat dorsal root ganglia (DRG). We found that the FLG flakes were actively internalized by sensory neurons, accumulated in large intracellular vesicles, and possibly degraded over time, without major toxicological concerns, as neuronal viability, morphology, protein content, and basic electrical properties of DRG neurons were preserved. Interestingly, in our electrophysiological investigation under noxious stimuli, we observed an increased functional response upon FLG treatment of the nociceptive subpopulation of DRG neurons in response to irritants specific for chemoreceptors TRPV1 and TRPA1. The observed effects of FLG on DRG neurons may open-up novel opportunities for applications of these materials in specific disease models.


Assuntos
Grafite , Nociceptores , Ratos , Animais , Nociceptores/metabolismo , Irritantes/metabolismo , Irritantes/farmacologia , Grafite/farmacologia , Grafite/metabolismo , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/farmacologia , Gânglios Espinais/metabolismo
2.
Nano Lett ; 23(7): 2981-2990, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36917703

RESUMO

Thanks to their biocompatibility and high cargo capability, graphene-based materials (GRMs) might represent an ideal brain delivery system. The capability of GRMs to reach the brain has mainly been investigated in vivo and has highlighted some controversy. Herein, we employed two in vitro BBB models of increasing complexity to investigate the bionano interactions with graphene oxide (GO) and few-layer graphene (FLG): a 2D murine Transwell model, followed by a 3D human multicellular assembloid, to mimic the complexity of the in vivo architecture and intercellular crosstalk. We developed specific methodologies to assess the translocation of GO and FLG in a label-free fashion and a platform applicable to any nanomaterial. Overall, our results show good biocompatibility of the two GRMs, which did not impact the integrity and functionality of the barrier. Sufficiently dispersed subpopulations of GO and FLG were actively uptaken by endothelial cells; however, the translocation was identified as a rare event.


Assuntos
Barreira Hematoencefálica , Grafite , Humanos , Animais , Camundongos , Células Endoteliais , Encéfalo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA