Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 5085, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36038546

RESUMO

African trypanosomes are extracellular pathogens of mammals and are exposed to the adaptive and innate immune systems. Trypanosomes evade the adaptive immune response through antigenic variation, but little is known about how they interact with components of the innate immune response, including complement. Here we demonstrate that an invariant surface glycoprotein, ISG65, is a receptor for complement component 3 (C3). We show how ISG65 binds to the thioester domain of C3b. We also show that C3 contributes to control of trypanosomes during early infection in a mouse model and provide evidence that ISG65 is involved in reducing trypanosome susceptibility to C3-mediated clearance. Deposition of C3b on pathogen surfaces, such as trypanosomes, is a central point in activation of the complement system. In ISG65, trypanosomes have evolved a C3 receptor which diminishes the downstream effects of C3 deposition on the control of infection.


Assuntos
Glicoproteínas de Membrana/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei , Trypanosoma , Animais , Complemento C3 , Antígeno de Macrófago 1 , Mamíferos/metabolismo , Camundongos , Trypanosoma/fisiologia , Trypanosoma brucei brucei/metabolismo
2.
Nat Microbiol ; 4(12): 2074-2081, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31636418

RESUMO

To maintain prolonged infection of mammals, African trypanosomes have evolved remarkable surface coats and a system of antigenic variation1. Within these coats are receptors for macromolecular nutrients such as transferrin2,3. These must be accessible to their ligands but must not confer susceptibility to immunoglobulin-mediated attack. Trypanosomes have a wide host range and their receptors must also bind ligands from diverse species. To understand how these requirements are achieved, in the context of transferrin uptake, we determined the structure of a Trypanosoma brucei transferrin receptor in complex with human transferrin, showing how this heterodimeric receptor presents a large asymmetric ligand-binding platform. The trypanosome genome contains a family of around 14 transferrin receptors4, which has been proposed to allow binding to transferrin from different mammalian hosts5,6. However, we find that a single receptor can bind transferrin from a broad range of mammals, indicating that receptor variation is unlikely to be necessary for promiscuity of host infection. In contrast, polymorphic sites and N-linked glycans are preferentially found in exposed positions on the receptor surface, not contacting transferrin, suggesting that transferrin receptor diversification is driven by a need for antigenic variation in the receptor to prolong survival in a host.


Assuntos
Interações Hospedeiro-Parasita/imunologia , Evasão da Resposta Imune , Receptores da Transferrina/química , Receptores da Transferrina/imunologia , Transferrina/metabolismo , Trypanosoma brucei brucei/imunologia , Variação Antigênica , Variação Genética , Humanos , Ligantes , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas de Protozoários/química , Proteínas de Protozoários/imunologia , Tripanossomíase Africana/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA