Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Chembiochem ; 25(9): e202400026, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38506247

RESUMO

In this work, we have discovered that the Gal-α-(1→3)-Gal-ß-(1→3)-GlcNAc trisaccharide, a fragment of the B antigen Type-1, is a new ligand of two C-type lectin receptors (CLRs) i. e. DCAR and Mincle which are key players in different types of autoimmune diseases. Accordingly, we report here on a straightforward methodology to access pure Gal-α-(1→3)-Gal-ß-(1→3)-GlcNAc trisaccharide. A spacer with a terminal primary amine group was included at the reducing end of the GlcNAc residue thus ensuring the further functionalization of the trisaccharide Gal-α-(1→3)-Gal-ß-(1→3)-GlcNAc.


Assuntos
Lectinas Tipo C , Receptores Imunológicos , Trissacarídeos , Lectinas Tipo C/metabolismo , Lectinas Tipo C/química , Trissacarídeos/química , Trissacarídeos/síntese química , Ligantes , Estereoisomerismo , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo
2.
Eur J Med Chem ; 246: 114961, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36495629

RESUMO

Biomedical applications of molecules that are able to modulate ß-adrenergic signaling have become increasingly attractive over the last decade, revealing that ß-adrenergic receptors (ß-ARs) are key targets for a plethora of therapeutic interventions, including cancer. Despite successes in ß-AR drug discovery, identification of ß-AR ligands that are useful as selective chemical tools in pharmacological studies of the three ß-AR subtypes, or lead compounds for drug development is still a highly challenging task. This is mainly due to the intrinsic plasticity of ß-ARs as G protein-coupled receptors in conjunction with the requirement for functional receptor subtype selectivity, tissue specificity and minimal off-target effects. With the aim to provide insight into structure-activity relationships for the three ß-AR subtypes, we have synthesized and obtained the pharmacological profile of a series of structurally diverse compounds (named MC) that were designed based on the aryloxy-propanolamine scaffold of SR59230A. Comparative analysis of their predicted binding mode within the active and inactive states of the receptors in combination with their pharmacological profile revealed key structural elements that control their activity as agonists or antagonists, in addition to clues about substituents that mediate selectivity for one receptor subtype over the others. We anticipate that these results will facilitate selective ß-AR drug development efforts.


Assuntos
Receptores Adrenérgicos beta , Receptores Acoplados a Proteínas G , Humanos , Receptores Adrenérgicos beta/química , Receptores Adrenérgicos beta/metabolismo , Ligantes , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade
3.
Nanoscale ; 14(28): 10190-10199, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35796327

RESUMO

The engineering of the surface of nanomaterials with bioactive molecules allows controlling their biological identity thus accessing functional materials with tuned physicochemical and biological profiles suited for specific applications. Then, the manufacturing process, by which the nanomaterial surface is grafted, has a significant impact on their development and innovation. In this regard, we report herein the grafting of sugar headgroups on a graphene oxide (GO) surface by exploiting a green manufacturing process that relies on the use of vibrational ball mills, a grinding apparatus in which the energy is transferred to the reacting species through collision with agate spheres inside a closed and vibrating vessel. The chemical composition and the morphology of the resulting glyco-graphene oxide conjugates (glyco-GO) are assessed by the combination of a series of complementary advanced techniques (i.e. UV-vis and Raman spectroscopy, transmission electron microscopy, and Magic Angle Spinning (MAS) solid-state NMR (ssNMR) providing in-depth insights into the chemical reactivity of GO in a mechanochemical route. The conjugation of monosaccharide residues on the GO surface significantly improves the antimicrobial activity of pristine GO against P. aeruginosa. Indeed, glyco-GO conjugates, according to the monosaccharide derivatives installed into the GO surface, affect the ability of sessile cells to adhere to a polystyrene surface in a colony forming assay. Scanning electron microscopy images clearly show that glyco-GO conjugates significantly disrupt an already established P. aeruginosa biofilm.


Assuntos
Grafite , Pseudomonas aeruginosa , Biofilmes , Grafite/química , Grafite/farmacologia , Monossacarídeos
4.
Chem Commun (Camb) ; 57(9): 1145-1148, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33411866

RESUMO

The ability to custom-modify cell surface glycans holds great promise for treatment of a variety of diseases. We propose a glycomimetic of l-fucose that markedly inhibits the creation of sLeX by FTVI and FTVII, but has no effect on creation of LeX by FTIX. Our findings thus indicate that selective suppression of sLex display can be achieved, and STD-NMR studies surprisingly reveal that the mimetic does not compete with GDP-fucose at the enzymatic binding site.


Assuntos
Fucose/análogos & derivados , Fucose/farmacologia , Fucosiltransferases/antagonistas & inibidores , Linhagem Celular Tumoral , Fucose/química , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/enzimologia , Leucemia-Linfoma Linfoblástico de Células Precursoras
5.
ACS Med Chem Lett ; 11(5): 913-920, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32435405

RESUMO

Sphingosine 1-phosphate (S1P) is a bioactive lipid mediator associated with diverse homeostatic and signaling roles. Enhanced biosynthesis of S1P, mediated by the sphingosine kinase isozymes (SK1 and SK2), is implicated in several pathophysiological conditions and diseases, including skeletal muscle fibrosis, inflammation, multiple sclerosis, and cancer. Therefore, therapeutic approaches that control S1P production have focused on the development of SK1/2 inhibitors. In this framework, we designed a series of natural monosaccharide-based compounds to enhance anchoring of the known SK1 inhibitor PF-543 at the polar head of the J-shaped substrate-binding channel. Herein, we describe the structure-based design and synthesis of new glycan-containing PF-543 analogues and we demonstrate their efficiency in a TGFß1-induced pro-fibrotic assay.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA