Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Virology ; 578: 45-60, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36463618

RESUMO

Influenza and COVID-19 are infectious respiratory diseases that represent a major concern to public health with social and economic impact worldwide, for which the available therapeutic options are not satisfactory. The RdRp has a central role in viral replication and thus represents a major target for the development of antiviral approaches. In this study, we focused on Influenza A virus PB1 polymerase protein and the betacoronaviruses nsp12 polymerase protein, considering their functional and structural similarities. We have performed conservation and druggability analysis to map conserved druggable regions, that may have functional or structural importance in these proteins. We disclosed the most promising and new targeting regions for the discovery of new potential polymerase inhibitors. Conserved druggable regions of putative interaction with favipiravir and molnupiravir were also mapped. We have also compared and integrated the current findings with previous research.


Assuntos
COVID-19 , Influenza Humana , Humanos , Antivirais/química , Proteínas do Complexo da Replicase Viral , Influenza Humana/tratamento farmacológico , RNA Polimerase Dependente de RNA/metabolismo , RNA Viral/genética
2.
Virology ; 578: 1-6, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36423573

RESUMO

PB1 influenza virus retain traces of interspecies transmission and adaptation. Previous phylogenetic analyses highlighted mutations L298I, R386K and I517V in PB1 to have putatively ameliorated the A(H1N1)pdm09 adaptation to the human host. This study aimed to evaluate the reversal of these mutations and infer the role of these residues in the virus overall fitness and adaptation. We generate PB1-mutated viruses introducing I298L, K386R and V517I mutations in PB1 and evaluate their phenotypic impact on viral growth and on antigen yield. We observed a decrease in viral growth accompanied by a reduction in hemagglutination titer and neuraminidase activity, in comparison with wt. Our data indicate that the adaptive evolution occurred in the PB1 leads to an improved overall viral fitness; and such biologic advantaged has the potential to be applied to the optimization of influenza vaccine seed prototypes.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Filogenia , Proteínas Virais/genética , Vírus da Influenza A/genética , Vacinas contra Influenza/genética
3.
Virus Res ; 315: 198795, 2022 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-35504447

RESUMO

Vaccination prevents and reduces the severity of influenza virus infections. Continuous evolution of influenza hemagglutinin (HA) and neuraminidase (NA) supports the virus to evade pre-existing immunity, which demands vaccines to be reformulated every year. Incorporation of polymerase basic protein 1 (PB1) viral RNA (vRNA) of the same origin of HA and NA vRNA has been observed in previous pandemic viruses and occasionally reported for influenza A vaccine prototype strains of prior seasons. At this point, it remains to be explored whether this phenomenon translates into an improved growth phenotype. In this work, we showed that the HA vRNA of A(H1N1)pdm09 is generally incorporated with the PB1 vRNA of the same origin, establishing the beneficial effect of the presence of PB1 and the pattern of the PB1-HA co-incorporation in the A(H1N1)pdm09 model. We further investigated the putative interplay between PB1 and antigenic proteins regarding the vRNA composition of the progeny and observed that vRNA segregation does not appear to be mainly determined by protein-protein interactions; while vRNA-vRNA interactions can be suggested as the main driving force. Our data also indicate an increase in the hemagglutination capacity and neuraminidase activity due to incorporation of PB1, HA and NA from A(H1N1)pdm09, in comparison with the recombinant virus incorporating only HA and NA from A(H1N1)pdm09 - which have the potential to improve current limitations regarding antigenicity and immunogenicity of influenza vaccines. Further knowledge of the complex vRNA-vRNA interaction network between PB1 and HA will additionally contribute to improve current vaccine formulation, and to gradually optimize the production of A(H1N1)pdm09 reverse genetics vaccine seed virus towards a higher cost-effectiveness.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Hemaglutininas , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vacinas contra Influenza/genética , Neuraminidase/genética , RNA Viral/genética , Proteínas Virais/metabolismo
4.
Immunogenetics ; 74(4): 381-407, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35348847

RESUMO

COVID-19 is a new complex multisystem disease caused by the novel coronavirus SARS-CoV-2. In slightly over 2 years, it infected nearly 500 million and killed 6 million human beings worldwide, causing an unprecedented coronavirus pandemic. Currently, the international scientific community is engaged in elucidating the molecular mechanisms of the pathophysiology of SARS-CoV-2 infection as a basis of scientific developments for the future control of COVID-19. Global exome and genome analysis efforts work to define the human genetics of protective immunity to SARS-CoV-2 infection. Here, we review the current knowledge regarding the SARS-CoV-2 infection, the implications of COVID-19 to Public Health and discuss genotype to phenotype association approaches that could be exploited through the selection of candidate genes to identify the genetic determinants of severe COVID-19.


Assuntos
COVID-19 , COVID-19/genética , Predisposição Genética para Doença , Humanos , Pandemias , Saúde Pública , SARS-CoV-2
5.
Virology ; 565: 106-116, 2022 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-34773868

RESUMO

Influenza NS1 is a promising anti-influenza target, considering its conserved and druggable structure, and key function in influenza replication and pathogenesis. Notwithstanding, target identification and validation, strengthened by experimental data, are lacking. Here, we further explored our previously designed structure-based antiviral rationale directed to highly conserved druggable NS1 regions across a broad spectrum of influenza A viruses. We aimed to identify NS1-mutated viruses exhibiting a reduced growth phenotype and/or an altered cell apoptosis profile. We found that NS1 mutations Y171A, K175A (consensus druggable pocket 1), W102A (consensus druggable pocket 3), Q121A and G184P (multiple consensus druggable pockets) - located at hot spots amenable for pharmacological modulation - significantly impaired A(H1N1)pdm09 virus replication, in vitro. This is the first time that NS1-K175A, -W102A, and -Q121A mutations are characterized. Our map-and-mutate strategy provides the basis to establish the NS1 as a promising target using a rationale with a higher resilience to resistance development.


Assuntos
Vírus da Influenza A/genética , Vírus da Influenza A/patogenicidade , Influenza Humana/virologia , Infecções por Orthomyxoviridae/virologia , Proteínas não Estruturais Virais/genética , Replicação Viral , Substituição de Aminoácidos , Animais , Apoptose , Linhagem Celular , Cães , Descoberta de Drogas , Células HEK293 , Interações entre Hospedeiro e Microrganismos , Humanos , Influenza Humana/metabolismo , Células Madin Darby de Rim Canino , Mutação , Infecções por Orthomyxoviridae/metabolismo
6.
Comput Struct Biotechnol J ; 18: 2117-2131, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32913581

RESUMO

There are no approved target therapeutics against SARS-CoV-2 or other beta-CoVs. The beta-CoV Spike protein is a promising target considering the critical role in viral infection and pathogenesis and its surface exposed features. We performed a structure-based strategy targeting highly conserved druggable regions resulting from a comprehensive large-scale sequence analysis and structural characterization of Spike domains across SARSr- and MERSr-CoVs. We have disclosed 28 main consensus druggable pockets within the Spike. The RBD and SD1 (S1 subunit); and the CR, HR1 and CH (S2 subunit) represent the most promising conserved druggable regions. Additionally, we have identified 181 new potential hot spot residues for the hSARSr-CoVs and 72 new hot spot residues for the SARSr- and MERSr-CoVs, which have not been described before in the literature. These sites/residues exhibit advantageous structural features for targeted molecular and pharmacological modulation. This study establishes the Spike as a promising anti-CoV target using an approach with a potential higher resilience to resistance development and directed to a broad spectrum of Beta-CoVs, including the new SARS-CoV-2 responsible for COVID-19. This research also provides a structure-based rationale for the design and discovery of chemical inhibitors, antibodies or other therapeutic modalities successfully targeting the Beta-CoV Spike protein.

7.
Virology ; 535: 297-307, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31104825

RESUMO

Influenza NS1 protein is among the most promising novel druggable anti-influenza target, based on its structure; multiple interactions; and global function in influenza replication and pathogenesis. Notwithstanding, drug development guidance based on NS1 structural biology is lacking. Here, we design a promising strategy directed to highly conserved druggable regions as a result of an exhaustive large-scale sequence analysis and structure characterization of NS1 protein across human-infecting influenza A subtypes, over the past 100 years. We have identified 3 druggable pockets and 8 new potential hot spot residues in the NS1 protein, not described before, additionally to other 16 sites previously identified, which represent attractive targets for pharmacological modulation. This study provides a rationale towards structure-function studies of NS1 druggable sites, which have the potential to accelerate the NS1 target validation. This research also contributes to a deeper comprehension and insight into the evolutionary dynamics of influenza A NS1 protein.


Assuntos
Antivirais/metabolismo , Desenho de Fármacos , Vírus da Influenza A/efeitos dos fármacos , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Antivirais/química , Antivirais/farmacologia , Sítios de Ligação , Biologia Computacional/métodos , Sequência Conservada , Desenvolvimento de Medicamentos/métodos , Humanos , Ligação Proteica , Conformação Proteica , Proteínas não Estruturais Virais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA