Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(6): 7219-7231, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38308580

RESUMO

This study investigated the redox exsolution of Ni nanoparticles from a nanoporous La0.52Sr0.28Ti0.94Ni0.06O3 perovskite. The characteristics of exsolved Ni nanoparticles including their size, population, and surface concentration were deeply analyzed by environmental scanning electron microscopy (ESEM), transmission electron microscopy-energy dispersive X-ray spectroscopy (TEM-EDX) mapping, and hydrogen temperature-programmed reduction (H2-TPR). Ni exsolution was triggered in hydrogen as early as 400 °C, with the highest catalytic activity for low-temperature CO oxidation achieved after a reduction step at 500 °C, despite only a 10% fraction of Ni exsolved. The activity and stability of exsolved nanoparticles were compared with their impregnated counterparts on a perovskite material with a similar chemical composition (La0.65Sr0.35TiO3) and a comparable specific surface area and Ni loading. After an aging step at 800 °C, the catalytic activity of exsolved Ni nanoparticles at 300 °C was found to be 10 times higher than that of impregnated ones, emphasizing the thermal stability of Ni nanoparticles prepared by redox exsolution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA