Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Biomed Eng ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710838

RESUMO

Following immunization, lymph nodes dynamically expand and contract. The mechanical and cellular changes enabling the early-stage expansion of lymph nodes have been characterized, yet the durability of such responses and their implications for adaptive immunity and vaccine efficacy are unknown. Here, by leveraging high-frequency ultrasound imaging of the lymph nodes of mice, we report more potent and persistent lymph-node expansion for animals immunized with a mesoporous silica vaccine incorporating a model antigen than for animals given bolus immunization or standard vaccine formulations such as alum, and that durable and robust lymph-node expansion was associated with vaccine efficacy and adaptive immunity for 100 days post-vaccination in a mouse model of melanoma. Immunization altered the mechanical and extracellular-matrix properties of the lymph nodes, drove antigen-dependent proliferation of immune and stromal cells, and altered the transcriptional features of dendritic cells and inflammatory monocytes. Strategies that robustly maintain lymph-node expansion may result in enhanced vaccination outcomes.

2.
Acta Biomater ; 177: 107-117, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38382830

RESUMO

Designing proteins that fold and assemble over different length scales provides a way to tailor the mechanical properties and biological performance of hydrogels. In this study, we designed modular proteins that self-assemble into fibrillar networks and, as a result, form hydrogel materials with novel properties. We incorporated distinct functionalities by connecting separate self-assembling (A block) and cell-binding (B block) domains into single macromolecules. The number of self-assembling domains affects the rigidity of the fibers and the final storage modulus G' of the materials. The mechanical properties of the hydrogels could be tuned over a broad range (G' = 0.1 - 10 kPa), making them suitable for the cultivation and differentiation of multiple cell types, including cortical neurons and human mesenchymal stem cells. Moreover, we confirmed the bioavailability of cell attachment domains in the hydrogels that can be further tailored for specific cell types or other biological applications. Finally, we demonstrate the versatility of the designed proteins for application in biofabrication as 3D scaffolds that support cell growth and guide their function. STATEMENT OF SIGNIFICANCE: Designed proteins that enable the decoupling of biophysical and biochemical properties within the final material could enable modular biomaterial engineering. In this context, we present a designed modular protein platform that integrates self-assembling domains (A blocks) and cell-binding domains (B blocks) within a single biopolymer. The linking of assembly domains and cell-binding domains this way provided independent tuning of mechanical properties and inclusion of biofunctional domains. We demonstrate the use of this platform for biofabrication, including neural cell culture and 3D printing of scaffolds for mesenchymal stem cell culture and differentiation. Overall, this work highlights how informed design of biopolymer sequences can enable the modular design of protein-based hydrogels with independently tunable biophysical and biochemical properties.


Assuntos
Hidrogéis , Células-Tronco Mesenquimais , Humanos , Hidrogéis/química , Proteínas/química , Materiais Biocompatíveis/metabolismo , Biopolímeros , Engenharia Tecidual
3.
Artigo em Inglês | MEDLINE | ID: mdl-38249777

RESUMO

Multielectrode arrays are fabricated from thin films of highly conductive and ductile metals which cannot mimic the natural environment of biological tissues. These properties limit the conformability of the electrode to the underlying target tissue, and present challenges in developing seamless interfaces. By introducing porous, hydrogel materials that are embedded with metal additives, highly conductive hydrogels can be formed. Tuning the hydrogel composition, % volume and aspect ratio of different additive(s), and the processing conditions of these composite materials can alter the mechanical and electrical properties. The resulting materials have a high surface area, and can be used as biomaterial scaffolds to support the growth of macrophages for 5 days. Further optimization can enable the use of the materials for the electrodes in implantable arrays, or as living electrode platforms to study and modulate various cellular cultures. These advancements would benefit both in vivo and in vitro applications of tissue engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA