Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Opin Microbiol ; 76: 102398, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37866203

RESUMO

In response to environmental cues, bacteria produce intracellular nucleotide messengers to regulate a wide variety of cellular processes and physiology. Studies on individual nucleotide messengers, such as (p)ppGpp or cyclic (di)nucleotides, have established their respective regulatory themes. As research on nucleotide signaling networks expands, recent studies have begun to uncover various crosstalk mechanisms between (p)ppGpp and other nucleotide messengers, including signal conversion, allosteric regulation, and target competition. The multiple layers of crosstalk implicate that (p)ppGpp is intricately linked to different nucleotide signaling pathways. From a physiological perspective, (p)ppGpp crosstalk enables fine-tuning and feedback regulation with other nucleotide messengers to achieve optimal adaptation.


Assuntos
Guanosina Pentafosfato , Nucleotídeos , Guanosina Pentafosfato/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , GMP Cíclico/metabolismo , Transdução de Sinais , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/metabolismo
2.
RNA ; 29(8): 1108-1116, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37142436

RESUMO

Rae1 is a well-conserved endoribonuclease among Gram-positive bacteria, cyanobacteria, and the chloroplasts of higher plants. We have previously shown that Rae1 cleaves the Bacillus subtilis yrzI operon mRNA in a translation-dependent manner within a short open reading frame (ORF) called S1025, encoding a 17-amino acid (aa) peptide of unknown function. Here, we map a new Rae1 cleavage site in the bmrBCD operon mRNA encoding a multidrug transporter, within an unannotated 26-aa cryptic ORF that we have named bmrX Expression of the bmrCD portion of the mRNA is ensured by an antibiotic-dependent ribosome attenuation mechanism within the upstream ORF bmrB Cleavage by Rae1 within bmrX suppresses bmrCD expression that escapes attenuation control in the absence of antibiotics. Similar to S1025, Rae1 cleavage within bmrX is both translation- and reading frame-dependent. Consistent with this, we show that translation-dependent cleavage by Rae1 promotes ribosome rescue by the tmRNA.


Assuntos
Endorribonucleases , Biossíntese de Proteínas , Endorribonucleases/genética , Endorribonucleases/metabolismo , Fases de Leitura Aberta , Ribossomos/genética , Ribossomos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo
3.
Microbiol Spectr ; : e0513422, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36840557

RESUMO

The impact of translation on mRNA stability can be varied, ranging from a protective effect of ribosomes that shield mRNA from RNases to preferentially exposing sites of RNase cleavage. These effects can change depending on whether ribosomes are actively moving along the mRNA or stalled at particular sequences or structures or awaiting charged tRNAs. We recently observed that depleting Bacillus subtilis cells of their tRNA maturation enzymes RNase P and RNase Z led to altered mRNA levels of a number of assembly factors involved in the biogenesis of the 30S ribosomal subunit. Here, we extended this study to other assembly factor and non-assembly factor mRNAs in B. subtilis. We additionally identified multiple transcriptional and translational layers of regulation of the rimM operon mRNA that occur in response to the depletion of functional tRNAs. IMPORTANCE The passage of ribosomes across individual mRNAs during translation can have different effects on their degradation, ranging from a protective effect by shielding from ribonucleases to, in some cases, making the mRNA more vulnerable to RNase action. We recently showed that some mRNAs coding for proteins involved in ribosome assembly were highly sensitive to the availability of functional tRNA. Using strains depleted of the major tRNA processing enzymes RNase P and RNase Z, we expanded this observation to a wider set of mRNAs, including some unrelated to ribosome biogenesis. We characterized the impact of tRNA maturase depletion on the rimM operon mRNA and show that it is highly complex, with multiple levels of transcriptional and posttranscriptional effects coming into play.

4.
Methods Mol Biol ; 2209: 403-424, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33201483

RESUMO

Ribonucleases can cleave RNAs internally in endoribonucleolytic mode or remove one nucleotide at a time from either the 5' or 3' end through exoribonuclease action. To show direct implication of an RNase in a specific pathway of RNA maturation or decay requires the setting up of in vitro assays with purified enzymes and substrates. This chapter complements Chapter 24 on assays of ribonuclease action in vivo by providing detailed protocols for the assay of B. subtilis RNases with prepared substrates in vitro.


Assuntos
Ensaios Enzimáticos/métodos , Sondas RNA/metabolismo , RNA Bacteriano/metabolismo , Ribonucleases/metabolismo , Bacillus subtilis/enzimologia , Regulação Bacteriana da Expressão Gênica , Cinética
5.
Methods Mol Biol ; 2209: 387-401, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33201482

RESUMO

Ribonucleases remodel RNAs to render them functional or to send them on their way toward degradation. In our laboratory, we study these pathways in detail using a plethora of different techniques. These can range from the isolation of RNAs in various RNase mutants to determine their implication in maturation or decay pathways by Northern blot, to proving their direct roles in RNA cleavage reactions using purified enzymes and transcribed substrates in vitro. In this chapter, we provide in-depth protocols for the techniques we use daily in the laboratory to assay RNase activity in vivo, with detailed notes on how to get these methods to work optimally. This chapter complements Chapter 25 on assays of ribonuclease action in vitro.


Assuntos
Bacillus subtilis/enzimologia , Ensaios Enzimáticos/métodos , Hibridização In Situ/métodos , RNA Bacteriano/metabolismo , Ribonucleases/metabolismo , Regulação Bacteriana da Expressão Gênica , Cinética
6.
Mol Cell ; 80(2): 227-236.e5, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32991829

RESUMO

The pathways for ribosomal RNA (rRNA) maturation diverge greatly among the domains of life. In the Gram-positive model bacterium, Bacillus subtilis, the final maturation steps of the two large ribosomal subunit (50S) rRNAs, 23S and 5S pre-rRNAs, are catalyzed by the double-strand specific ribonucleases (RNases) Mini-RNase III and RNase M5, respectively. Here we present a protocol that allowed us to solve the 3.0 and 3.1 Å resolution cryoelectron microscopy structures of these RNases poised to cleave their pre-rRNA substrates within the B. subtilis 50S particle. These data provide the first structural insights into rRNA maturation in bacteria by revealing how these RNases recognize and process double-stranded pre-rRNA. Our structures further uncover how specific ribosomal proteins act as chaperones to correctly fold the pre-rRNA substrates and, for Mini-III, anchor the RNase to the ribosome. These r-proteins thereby serve a quality-control function in the process from accurate ribosome assembly to rRNA processing.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Precursores de RNA/metabolismo , Ribonucleases/química , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Bacillus subtilis/ultraestrutura , Proteínas de Bactérias/ultraestrutura , Sequência de Bases , Microscopia Crioeletrônica , Modelos Moleculares , Precursores de RNA/ultraestrutura , Ribonucleases/ultraestrutura , Subunidades Ribossômicas Maiores de Bactérias/ultraestrutura , Especificidade por Substrato
7.
Biochim Biophys Acta Gene Regul Mech ; 1863(5): 194505, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32061882

RESUMO

Messenger RNA processing and decay is a key mechanism to control gene expression at the post-transcriptional level in response to ever-changing environmental conditions. In this review chapter, we discuss the main ribonucleases involved in these processes in bacteria, with a particular but non-exclusive emphasis on the two best-studied paradigms of Gram-negative and Gram-positive bacteria, E. coli and B. subtilis, respectively. We provide examples of how the activity and specificity of these enzymes can be modulated at the protein level, by co-factor binding and by post-translational modifications, and how they can be influenced by specific properties of their mRNA substrates, such as 5' protective 'caps', nucleotide modifications, secondary structures and translation. This article is part of a Special Issue entitled: RNA and gene control in bacteria edited by Dr. M. Guillier and F. Repoila.


Assuntos
Regulação Bacteriana da Expressão Gênica , Processamento Pós-Transcricional do RNA , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Bactérias/metabolismo , Endorribonucleases/metabolismo , RNA Bacteriano/genética , RNA Mensageiro/genética
8.
Mol Cell ; 74(6): 1227-1238.e3, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31003868

RESUMO

rRNAs and tRNAs universally require processing from longer primary transcripts to become functional for translation. Here, we describe an unsuspected link between tRNA maturation and the 3' processing of 16S rRNA, a key step in preparing the small ribosomal subunit for interaction with the Shine-Dalgarno sequence in prokaryotic translation initiation. We show that an accumulation of either 5' or 3' immature tRNAs triggers RelA-dependent production of the stringent response alarmone (p)ppGpp in the Gram-positive model organism Bacillus subtilis. The accumulation of (p)ppGpp and accompanying decrease in GTP levels specifically inhibit 16S rRNA 3' maturation. We suggest that cells can exploit this mechanism to sense potential slowdowns in tRNA maturation and adjust rRNA processing accordingly to maintain the appropriate functional balance between these two major components of the translation apparatus.


Assuntos
Bacillus subtilis/genética , Regulação Bacteriana da Expressão Gênica , Guanosina Pentafosfato/biossíntese , Iniciação Traducional da Cadeia Peptídica , RNA Ribossômico 16S/genética , RNA de Transferência/genética , Bacillus subtilis/metabolismo , Sequência de Bases , Guanosina Pentafosfato/genética , Guanosina Trifosfato/metabolismo , Ligases/genética , Ligases/metabolismo , Conformação de Ácido Nucleico , RNA Ribossômico 16S/química , RNA Ribossômico 16S/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/genética , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Subunidades Ribossômicas Menores de Bactérias/genética , Subunidades Ribossômicas Menores de Bactérias/metabolismo
9.
Mol Microbiol ; 108(1): 45-62, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29363854

RESUMO

Sporulation in Bacillus subtilis is a paradigm of bacterial development, which involves the interaction between a larger mother cell and a smaller forespore. The mother cell and the forespore activate different genetic programs, leading to the production of sporulation-specific proteins. A critical gap in our understanding of sporulation is how vegetative proteins, made before sporulation initiation, contribute to spore formation. Here we present a system, spatiotemporally regulated proteolysis (STRP), which enables the rapid, developmentally regulated degradation of target proteins, thereby providing a suitable method to dissect the cell- and developmental stage-specific role of vegetative proteins. STRP has been used to dissect the role of two major vegetative sigma factors, σH and σA , during sporulation. The results suggest that σH is only required in predivisional cells, where it is essential for sporulation initiation, but that it is dispensable during subsequent steps of spore formation. However, evidence has been provided that σA plays different roles in the mother cell, where it replenishes housekeeping functions, and in the forespore, where it plays an unexpected role in promoting spore germination and outgrowth. Altogether, the results demonstrate that STRP has the potential to provide a comprehensive molecular dissection of every stage of sporulation, germination and outgrowth.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Proteólise , Fator sigma/metabolismo , Esporos Bacterianos/metabolismo , Sequência de Aminoácidos , Bacillus subtilis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Divisão Celular , Contagem de Colônia Microbiana , Regulação Bacteriana da Expressão Gênica , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia de Fluorescência , Microscopia de Contraste de Fase , Fator sigma/química , Fator sigma/genética , Esporos Bacterianos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA