RESUMO
C2 products are more desirable than C1 products during CO2 electroreduction (CO2ER) because the former possess higher energy density and greater industrial value. For CO2ER, Cu is a well-known catalyst, but the selectivity toward C2 products is still a big challenge for researchers due to complex intermediates, different final products, and large space of the catalyst due to its morphology, plane, size, host surface etc. Using density functional theory (DFT) calculations, we find that alloying of Cu nanoparticles can help to enhance the selectivity toward C2 products during CO2ER with a low overpotential. By a systematic investigation of 111 planes (which prefer the C1 product in the case of bulk Cu), the alloys show the generation of C2 products via *CO-*CO dimerization (* indicates adsorbed state). It also suppresses the counter-pathway of hydrogenation of *CO to *CHO, which leads to C1 products. Further, we find that *CH2CHO is the bifurcating intermediate to distinguish between ethanol and ethylene as the final product. We have used simple graphical construction to identify the catalyst for CO2ER over HER, and vice versa. We have also defined the case of hydrogen poisoning and projected a parity plot to recognize the catalyst for C2 product evolution over the C1 product. Our study reveals that Cu-Ag and Cu-Zn catalysts selectively promote ethanol production on 111 planes. Moreover, an edge-doped 2SO2 graphene nanoribbon as the host layer further lowers the barrier and selectively promotes ethanol on Cu38- and Cu79-based alloys. This work provides new theoretical insights into designing Cu-based nanoalloy catalysts for C2 product formation on the 111 plane.
RESUMO
The construction of photoactive units in the proximity of a stable framework support is one of the promising strategies for uplifting photocatalysis. In this work, the ultrasmall Pd NPs implanted onto core-shell (CS) metal organic frameworks (MOFs), i.e., CS@Pd nanoarchitectures with tailored electronic and structural properties are reported. The all-in-one heterogeneous catalyst CS@Pd3 improves the surface functionalities and exhibits an outstanding hydrogen evolution reaction (HER) activity rate of 12.7 mmol g-1 h-1, which is 10-folds higher than the pristine frameworks with an apparent quantum efficiency (AQE) of 9.02%. The bifunctional CS@Pd shows intriguing results when subjected to photocatalytic CO2 reduction with an impressive rate of 71 µmol g-1 h-1 of MeOH under visible-light irradiation at ambient conditions. Spectroscopic data reveal efficient charge migrations and an extended lifetime of 2.4 ns, favoring efficient photocatalysis. The microscopic study affirms the formation of well-ordered CS morphology with precise decoration of Pd NPs over the CS networks. The significance of active Pd and Co sites is addressed by congruent charge-transfer kinetics and computational density functional theory calculations of CS@Pd, which validate the experimental findings with their synergistic involvement in improved photocatalytic activity. This present work provides a facile and competent avenue for the systematic construction of MOF-based CS heterostructures with active Pd NPs.
RESUMO
Conjugated polymers and titanium-based metal-organic framework (Ti-MOF) photocatalysts have demonstrated promising features for visible-light-driven hydrogen production. We report herein a strategy of anisotropic phenanthroline-based ruthenium polymers (PPDARs) over Ti-MOF, a tunable platform for efficient visible-light-driven photocatalytic hydrogen evolution reaction (HER). Several analytical methods including X-ray absorption spectroscopy (XAS) revealed the judicious integration of the surface-active polymer over the Ti-MOF reinforcing the catalytic activity over the broad chemical space. PPDAR-4 polyacrylate achitecture led to a substantial increase in the H2 evolution rate of 2438 µmolg-1h-1 (AQY: 5.33%) compared to pristine Ti-MOF (238 µmol g-1 h-1). The separation of photogenerated charge carriers at the PPDAR-4/Ti-MOF interface was confirmed by the optical and electrochemical investigations. The experimental, as well as theoretical data, revealed their physical and chemical properties which are positively correlated with the H2 generation rate. This offers a new avenue in creating polymer-based MOF robust photocatalysts for sustainable energy.