Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39026875

RESUMO

Across development, children must learn motor skills such as eating with a spoon and drawing with a crayon. Reinforcement learning, driven by success and failure, is fundamental to such sensorimotor learning. It typically requires a child to explore movement options along a continuum (grip location on a crayon) and learn from probabilistic rewards (whether the crayon draws or breaks). Here, we studied the development of reinforcement motor learning using online motor tasks to engage children aged 3 to 17 and adults (cross-sectional sample, N=385). Participants moved a cartoon penguin across a scene and were rewarded (animated cartoon clip) based on their final movement position. Learning followed a clear developmental trajectory when participants could choose to move anywhere along a continuum and the reward probability depended on final movement position. Learning was incomplete or absent in 3 to 8-year-olds and gradually improved to adult-like levels by adolescence. A reinforcement learning model fit to each participant identified three age-dependent factors underlying improvement: amount of exploration after a failed movement, learning rate, and level of motor noise. We predicted, and confirmed, that switching to discrete targets and deterministic reward would improve 3 to 8-year-olds' learning to adult-like levels by increasing exploration after failed movements. Overall, we show a robust developmental trajectory of reinforcement motor learning abilities under ecologically relevant conditions i.e., continuous movement options mapped to probabilistic reward. This learning appears to be limited by immature spatial processing and probabilistic reasoning abilities in young children and can be rescued by reducing the demands in these domains.

2.
Physiol Rep ; 11(13): e15764, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37434268

RESUMO

Here we designed a motor adaptation video game that could be played remotely (at home) through a web browser. This required the child to adapt to a visuomotor rotation between their hand movement and a ball displayed in the game. The task had several novel features, specifically designed to allow the study of the developmental trajectory of adaptation across a wide range of ages. We test the concurrent validity by comparing children's performance on our remote task to the same task performed in the laboratory. All participants remained engaged and completed the task. We quantified feedforward and feedback control during this task. Feedforward control, a key measure of adaptation, was similar at home and in the laboratory. All children could successfully use feedback control to guide the ball to a target. Traditionally, motor learning studies are performed in a laboratory to obtain high quality kinematic data. However, here we demonstrate concurrent validity of kinematic behavior when conducted at home. Our online platform provides the flexibility and ease of collecting data that will enable future studies with large sample sizes, longitudinal experiments, and the study of children with rare diseases.


Assuntos
Aclimatação , Jogos de Vídeo , Criança , Humanos , Mãos , Movimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA