Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Prog Neuropsychopharmacol Biol Psychiatry ; 38(2): 260-9, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22542870

RESUMO

Supratherapeutic doses of the analgesic acetaminophen (paracetomol) are reported to promote social behavior in Swiss mice. However, we hypothesized that it might not promote sociability in other strains due to cannabinoid CB(1) receptor-mediated inhibition of serotonin (5-HT) transmission in the frontal cortex. We examined the effects of acetaminophen on social and repetitive behaviors in comparison to a cannabinoid agonist, WIN 55,212-2, in two strains of socially-deficient mice, BTBR and 129S1/SvImJ (129S). Acetaminophen (100mg/kg) enhanced social interactions in BTBR, and social novelty preference and marble burying in 129S at serum levels of ≥70 ng/ml. Following acetaminophen injection or sociability testing, anandamide (AEA) increased in BTBR frontal cortex, while behavior testing increased 2-arachidonyl glycerol (2-AG) levels in 129S frontal cortex. In contrast, WIN 55,212-2 (0.1mg/kg) did not enhance sociability. Further, we expected CB(1)-deficient (+/-) mice to be less social than wild-type, but instead found similar sociability. Given strain differences in endocannabinoid response to acetaminophen, we compared cortical CB(1) and 5-HT(1A) receptor density and function relative to sociable C57BL/6 mice. CB(1) receptor saturation binding (Bmax=958±117 fmol/mg protein), and affinity for [(3)H] CP55,940 (K(D)=3±0.8 nM) was similar in frontal cortex among strains. CP55,940-stimulated [(35)S] GTPγS binding in cingulate cortex was 136±12, 156±22, and 75±9% above basal in BTBR, 129S and C57BL/6 mice. The acetaminophen metabolite para-aminophenol (1 µM) failed to stimulate [(35)S] GTPγS binding. Hence, it appears that other indirect actions of acetaminophen, including 5-HT receptor agonism, may underlie its sociability promoting properties outweighing any CB(1) mediated suppression by locally-elevated endocannabinoids in these mice.


Assuntos
Acetaminofen/farmacologia , Ácidos Araquidônicos/metabolismo , Comportamento Animal/efeitos dos fármacos , Endocanabinoides/metabolismo , Lobo Frontal/efeitos dos fármacos , Glicerídeos/metabolismo , Alcamidas Poli-Insaturadas/metabolismo , Comportamento Social , Animais , Benzoxazinas/farmacologia , Relação Dose-Resposta a Droga , Lobo Frontal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos , Morfolinas/farmacologia , Naftalenos/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Serotonina/metabolismo
2.
Nat Protoc ; 3(9): 1494-500, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18772877

RESUMO

The incidence of fungal infections has increased significantly over the past decades. Very often these infections are associated with biofilm formation on implanted biomaterials and/or host surfaces. This has important clinical implications, as fungal biofilms display properties that are dramatically different from planktonic (free-living) populations, including increased resistance to antifungal agents. Here we describe a rapid and highly reproducible 96-well microtiter-based method for the formation of fungal biofilms, which is easily adaptable for antifungal susceptibility testing. This model is based on the ability of metabolically active sessile cells to reduce a tetrazolium salt (2,3-bis(2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide) to water-soluble orange formazan compounds, the intensity of which can then be determined using a microtiter-plate reader. The entire procedure takes approximately 2 d to complete. This technique simplifies biofilm formation and quantification, making it more reliable and comparable among different laboratories, a necessary step toward the standardization of antifungal susceptibility testing of biofilms.


Assuntos
Biofilmes/crescimento & desenvolvimento , Técnicas de Cultura de Células/métodos , Fungos/crescimento & desenvolvimento , Farmacorresistência Fúngica , Formazans , Fungos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA