Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 11(12): 5465-70, 2011 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-22112200

RESUMO

Quantum confinement of carriers has a substantial impact on nanoscale device operations. We present electrical transport analysis for lithographically fabricated sub-5 nm thick Si nanowire field-effect transistors and show that confinement-induced quantum oscillations prevail at 300 K. Our results discern the basis of recent observations of performance enhancement in ultrathin Si nanowire field-effect transistors and provide direct experimental evidence for theoretical predictions of enhanced carrier mobility in strongly confined nanowire devices.

2.
J Microencapsul ; 28(8): 771-82, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21970658

RESUMO

Mechanically robust, cell encapsulating microdevices fabricated using photolithographic methods can lead to more efficient immunoisolation in comparison to cell encapsulating hydrogels. There is a need to develop adhesive bonding methods which can seal such microdevices under physiologically friendly conditions. We report the bonding of SU-8 based substrates through (i) magnetic self assembly, (ii) using medical grade photocured adhesive and (iii) moisture and photochemical cured polymerization. Magnetic self-assembly, carried out in biofriendly aqueous buffers, provides weak bonding not suitable for long term applications. Moisture cured bonding of covalently modified SU-8 substrates, based on silanol condensation, resulted in weak and inconsistent bonding. Photocured bonding using a medical grade adhesive and of acrylate modified substrates provided stable bonding. Of the methods evaluated, photocured adhesion provided the strongest and most stable adhesion.


Assuntos
Cápsulas/química , Composição de Medicamentos/métodos , Ilhotas Pancreáticas/citologia , Imãs/química , Nanoestruturas/química , Adesivos/química , Animais , Sobrevivência Celular , Terapia Baseada em Transplante de Células e Tecidos , Células Imobilizadas/citologia , Compostos de Epóxi/química , Humanos , Polimerização , Porosidade , Silanos/química
3.
Nano Lett ; 11(4): 1412-7, 2011 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-21375286

RESUMO

We demonstrate lithographically fabricated Si nanowire field effect transistors (FETs) with long Si nanowires of tiny cross sectional size (∼3-5 nm) exhibiting high performance without employing complementarily doped junctions or high channel doping. These nanowire FETs show high peak hole mobility (as high as over 1200 cm(2)/(V s)), current density, and drive current as well as low drain leakage current and high on/off ratio. Comparison of nanowire FETs with nanobelt FETs shows enhanced performance is a result of significant quantum confinement in these 3-5 nm wires. This study suggests simple (no additional doping) FETs using tiny top-down nanowires can deliver high performance for potential impact on both CMOS scaling and emerging applications such as biosensing.


Assuntos
Nanoestruturas/química , Fotografação/métodos , Silício/química , Transistores Eletrônicos , Desenho de Equipamento , Análise de Falha de Equipamento , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Teoria Quântica
4.
ACS Nano ; 3(10): 3085-90, 2009 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-19731931

RESUMO

Control of polymer morphology and chain orientation is of great importance in organic solar cells and field effect transistors (OFETs). Here we report the use of nanoimprint lithography to fabricate large-area, high-density, and ordered nanostructures in conjugated polymer poly(3-hexylthiophene) or P3HT, and also to simultaneously control 3D chain alignment within these P3HT nanostructures. Out-of-plane and in-plane grazing incident X-ray diffraction were used to determine the chain orientation in the imprinted P3HT nanostructures, which shows a strong dependence on their geometry (gratings or pillars). Vertical chain alignment was observed in both nanogratings and nanopillars, indicating strong potential to improve charge transport and optical properties for solar cells in comparison to bulk heterojunction structure. For P3HT nanogratings, pi-pi stacking along the grating direction with an angular distribution of +/-20 degrees was found, which is favorable for OFETs. We propose the chain alignment is induced by the nanoconfinement during nanoimprinting via pi-pi interaction and hydrophobic interaction between polymer chain and mold surfaces.

5.
Biomed Microdevices ; 11(6): 1205-12, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19629700

RESUMO

With strides in stem cell biology, cell engineering and molecular therapy, the transplantation of cells to produce therapeutic molecules endogenously is an attractive and achievable alternative to the use of exogenous drugs. The encapsulation of such cell transplants in semi-permeable, nanoporous constructs is often required to protect them from immune attack and to prevent their proliferation in the host. However, effective graft immunoisolation has been mostly elusive owing to the absence of a high-throughput method to create precisely controlled, high-aspect-ratio nanopores. To address the clinical need for effective cell encapsulation and immunoisolation, we devised a biocompatible cell-encapsulating microcontainer and a method to create highly anisotropic nanopores in the microcontainer's surface. To evaluate the efficacy of these nanopores in oxygenating the encapsulated cells, we engineered 9L rat glioma cells to bioluminesce under hypoxic conditions. The methods described above should aid in evaluating the long term survival and efficacy of cellular grafts.


Assuntos
Transplante de Células/métodos , Oxigênio/metabolismo , Animais , Células Cultivadas , Porosidade , Ratos
6.
Artigo em Inglês | MEDLINE | ID: mdl-20300441

RESUMO

Cells can secrete biotherapeutic molecules that can replace or restore host function. The transplantation of such cells is a promising therapeutic modality for the treatment of several diseases including type 1 diabetes mellitus. These cellular grafts are encapsulated in semipermeable and immunoisolative membranes to protect them from the host immune system, while allowing the transport of nutrients and small molecules that are required for cell survival and function. The authors report on SU-8-based biocompatible immunoisolative cuboid microcontainers for cell transplantation. Each microcontainer comprises a 300×300×250 or a 1100×1100×250 µm(3) SU-8 hollowed cuboid base that houses the cells and an optically transparent SU-8-based nanoporous lid that closes the device. The hollowed cuboid base was formed by conventional optical lithography to have 8 nl (200×200×200 µm(3)) encapsulation volume for cellular payload. The lid comprises a thick SU-8 slab with an array of cylindrical wells, whose bottom surface is sealed with a thin nanoporous SU-8 membrane. The nanoporous membrane was created from a 100 nm grating (width and spacing) initial silicon mold subjected to a repeated cycle of oxidation and wet etching to achieve a 20 nm wide and 200 nm pitch nano silicon grating. Nanoimprinting and oblique-angle metal deposition, followed by inductively coupled plasma etching were utilized to create 15 nm wide and 350-450 nm deep nanoslots in the thin SU-8 membrane. Isolated mouse islets were encapsulated in the hollowed cuboid base and the nanoporous lid was assembled on top. The penetration of large and small molecules into the microcontainer was observed with fluorescence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA