Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
2.
Transplantation ; 107(9): 2064-2072, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37606906

RESUMO

BACKGROUND: There is a dire need for specific, noninvasive biomarkers that can accurately detect cardiac acute cellular rejection (ACR) early. Previously, we described miR-144-3p as an excellent candidate for detecting grade ≥2R ACR. Now, we investigated the combination of miR-144-3p with miR-652-3p, other differentially expressed serum miRNA we previously described, to improve diagnostic accuracy mainly in mild rejection to avoid reaching severe stages. METHODS: We selected miR-652-3p from a preliminary RNA-seq study to be validated by reverse transcription-quantitative polymerase chain reaction on 212 consecutive serum samples from transplantation recipients undergoing routine endomyocardial biopsies to subsequently combine them with miR-144-3p results and investigate their diagnostic capability. RESULTS: We confirmed the miR-652-3p overexpression (P < 0.0001) and its capability to discriminate between patients with and without ACR of any grade (P < 0.0001). The combined serum levels of miR-144-3p and miR-652-3p were significantly higher in patients with rejection regardless of posttransplantation time (P < 0.0001). This combination resulted in a diagnostic efficacy for 1R (area under the curve = 0.794) and ≥2R (area under the curve = 0.892; P < 0.0001) that was superior to each biomarker alone. Furthermore, it was a strong independent predictor of ACR for 1R (odds ratio of 10.950; P < 0.0001) and ≥2R (odds ratio of 14.289; P < 0.01). CONCLUSIONS: We demonstrated that an appropriate combination of blood-based biomarkers could exhibit greater efficiency for cardiac rejection diagnosis. The combined detection of abnormal expression of miR-144-3p and miR-652-3p in the serum of ACR patients can improve the diagnostic sensitivity of rejection at an early stage and contribute to increasing the diagnostic accuracy, mainly in the lower rejection grades.


Assuntos
Transplante de Coração , MicroRNAs , Humanos , Transplante de Coração/efeitos adversos , Coração , MicroRNAs/genética , Diagnóstico Precoce , Biomarcadores
4.
Antioxidants (Basel) ; 12(7)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37507877

RESUMO

Ischemic cardiomyopathy (ICM) is associated with abnormal microRNA expression levels that involve an altered gene expression profile. However, little is known about the underlying causes of microRNA disruption in ICM and whether microRNA maturation is compromised. Therefore, we focused on microRNA maturation defects analysis and the implication of the microRNA biogenesis pathway and redox-sensitive microRNAs (redoximiRs). Transcriptomic changes were investigated via ncRNA-seq (ICM, n = 22; controls, n = 8) and mRNA-seq (ICM, n = 13; control, n = 10). The effect of hypoxia on the biogenesis of microRNAs was evaluated in the AC16 cell line. ICM patients showed a reduction in microRNA maturation compared to control (4.30 ± 0.94 au vs. 5.34 ± 1.07 au, p ˂ 0.05), accompanied by a deregulation of the microRNA biogenesis pathway: a decrease in pre-microRNA export (XPO5, FC = -1.38, p ˂ 0.05) and cytoplasmic processing (DICER, FC = -1.32, p ˂ 0.01). Both processes were regulated by hypoxia in AC16 cells (XPO5, FC = -1.65; DICER1, FC = -1.55; p ˂ 0.01; Exportin-5, FC = -1.81; Dicer, FC = -1.15; p ˂ 0.05). Patients displayed deregulation of several redoximiRs, highlighting miR-122-5p (FC = -2.41, p ˂ 0.001), which maintained a good correlation with the ejection fraction (r = 0.681, p ˂ 0.01). We evidenced a decrease in microRNA maturation mainly linked to a decrease in XPO5-mediated pre-microRNA export and DICER1-mediated processing, together with a general effect of hypoxia through deregulation of biogenesis pathway and the redoximiRs.

5.
Eur J Neurol ; 30(8): 2401-2410, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37183562

RESUMO

BACKGROUND AND PURPOSE: Vitamin D is considered to play a role in multiple sclerosis (MS) etiopathogenesis. A polymorphism in the CYP24A1 gene, rs2762943, was recently identified that was associated with an increased MS risk. CYP24A1 encodes a protein involved in the catabolism of the active form of vitamin D. The immunological effects of carrying the rs2762943 risk allele were investigated, as well as its role as genetic modifier. METHODS: Serum levels of 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D (1,25(OH)2 D) were measured in a cohort of 167 MS patients. In a subgroup of patients, expression levels of major histocompatibility complex class II and co-stimulatory molecules were determined by flow cytometry, and serum levels of pro-inflammatory (interferon gamma, granulocyte macrophage colony-stimulating factor, C-X-C motif chemokine ligand 13) and anti-inflammatory (interleukin 10) cytokines and neurofilament light chain were measured by single-molecule array assays. The effect of the rs2762943 polymorphism on disease activity and disability measures was evaluated in 340 MS patients. RESULTS: Compared to non-carriers, carriers of the rs2762943 risk allele were characterized by reduced levels of 1,25(OH)2 D (p = 0.0001) and elevated levels of interferon gamma (p = 0.03) and granulocyte macrophage colony-stimulating factor (p = 0.008), whereas no significant differences were observed for the other markers. The presence of the rs2762943 risk allele had no significant impact on disease activity and disability outcomes during follow-up. However, risk allele carriers were younger at disease onset (p = 0.04). CONCLUSIONS: These findings suggest that the CYP24A1 rs2762943 polymorphism plays a more important role in MS susceptibility than in disease prognosis and is associated with lower 1,25(OH)2 D levels and a heightened pro-inflammatory environment in MS patients.


Assuntos
Esclerose Múltipla , Humanos , Vitamina D3 24-Hidroxilase/genética , Vitamina D3 24-Hidroxilase/metabolismo , Esclerose Múltipla/genética , Interferon gama , Fator Estimulador de Colônias de Macrófagos , Vitamina D , Vitaminas
6.
Transplantation ; 107(2): 466-474, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35939381

RESUMO

BACKGROUND: Given the central role of sarcomeric dysfunction in cardiomyocyte biology and sarcomere alterations described in endomyocardial biopsies of transplant patients with rejection, we hypothesized that the serum expression levels of genes encoding sarcomeric proteins were altered in acute cellular rejection (ACR). The aim of this study is to identify altered sarcomere-related molecules in serum and to evaluate their diagnostic accuracy for detecting rejection episodes. METHODS: Serum samples from transplant recipients undergoing routine endomyocardial biopsies were included in an RNA sequencing analysis (n = 40). Protein concentrations of alpha-cardiac actin were determined using a specific enzyme-linked immunoassay (n = 80). RESULTS: We identified 17 sarcomeric genes differentially expressed in patients with clinically relevant rejection (grade ≥2R ACR). A receiver operating characteristic curve was done to assess their accuracy for ACR detection and found that 6 relevant actins, myosins, and other sarcomere-related genes showed great diagnostic capacity with an area under the curve (AUC) > 0.800. Specifically, the gene encoding alpha-cardiac actin ( ACTC1 ) showed the best results (AUC = 1.000, P < 0.0001). We determine ACTC1 protein levels in a larger patient cohort, corroborating its overexpression and obtaining a significant diagnostic capacity for clinically relevant rejection (AUC = 0.702, P < 0.05). CONCLUSIONS: Sarcomeric alterations are reflected in peripheral blood of patients with allograft rejection. Because of their precision to detect ACR, we propose sarcomere ACTC1 serum expression levels as potential candidate for to be included in the development of molecular panel testing for noninvasive ACR detection.


Assuntos
Transplante de Coração , Transplantes , Humanos , Actinas/genética , Transplante de Coração/efeitos adversos , Rejeição de Enxerto/diagnóstico , Rejeição de Enxerto/genética , Rejeição de Enxerto/patologia , Transplante Homólogo
7.
Am J Hum Genet ; 109(10): 1828-1849, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36084634

RESUMO

Orofaciodigital syndrome (OFD) is a genetically heterogeneous ciliopathy characterized by anomalies of the oral cavity, face, and digits. We describe individuals with OFD from three unrelated families having bi-allelic loss-of-function variants in SCNM1 as the cause of their condition. SCNM1 encodes a protein recently shown to be a component of the human minor spliceosome. However, so far the effect of loss of SCNM1 function on human cells had not been assessed. Using a comparative transcriptome analysis between fibroblasts derived from an OFD-affected individual harboring SCNM1 mutations and control fibroblasts, we identified a set of genes with defective minor intron (U12) processing in the fibroblasts of the affected subject. These results were reproduced in SCNM1 knockout hTERT RPE-1 (RPE-1) cells engineered by CRISPR-Cas9-mediated editing and in SCNM1 siRNA-treated RPE-1 cultures. Notably, expression of TMEM107 and FAM92A encoding primary cilia and basal body proteins, respectively, and that of DERL2, ZC3H8, and C17orf75, were severely reduced in SCNM1-deficient cells. Primary fibroblasts containing SCNM1 mutations, as well as SCNM1 knockout and SCNM1 knockdown RPE-1 cells, were also found with abnormally elongated cilia. Conversely, cilia length and expression of SCNM1-regulated genes were restored in SCNM1-deficient fibroblasts following reintroduction of SCNM1 via retroviral delivery. Additionally, functional analysis in SCNM1-retrotransduced fibroblasts showed that SCNM1 is a positive mediator of Hedgehog (Hh) signaling. Our findings demonstrate that defective U12 intron splicing can lead to a typical ciliopathy such as OFD and reveal that primary cilia length and Hh signaling are regulated by the minor spliceosome through SCNM1 activity.


Assuntos
Ciliopatias , Síndromes Orofaciodigitais , Cílios/genética , Cílios/metabolismo , Ciliopatias/genética , Proteínas Hedgehog/metabolismo , Humanos , Íntrons/genética , Mutação/genética , Síndromes Orofaciodigitais/genética , Splicing de RNA/genética , Fatores de Processamento de RNA/metabolismo , RNA Interferente Pequeno/metabolismo , Spliceossomos/genética , Spliceossomos/metabolismo
8.
J Exp Clin Cancer Res ; 41(1): 285, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163066

RESUMO

BACKGROUND: Gasdermin B (GSDMB) over-expression promotes poor prognosis and aggressive behavior in HER2 breast cancer by increasing resistance to therapy. Decoding the molecular mechanism of GSDMB-mediated drug resistance is crucial to identify novel effective targeted treatments for HER2/GSDMB aggressive tumors. METHODS: Different in vitro approaches (immunoblot, qRT-PCR, flow cytometry, proteomic analysis, immunoprecipitation, and confocal/electron microscopy) were performed in HER2 breast and gastroesophageal carcinoma cell models. Results were then validated using in vivo preclinical animal models and analyzing human breast and gastric cancer samples. RESULTS: GSDMB up-regulation renders HER2 cancer cells more resistant to anti-HER2 agents by promoting protective autophagy. Accordingly, the combination of lapatinib with the autophagy inhibitor chloroquine increases the therapeutic response of GSDMB-positive cancers in vitro and in zebrafish and mice tumor xenograft in vivo models. Mechanistically, GSDMB N-terminal domain interacts with the key components of the autophagy machinery LC3B and Rab7, facilitating the Rab7 activation during pro-survival autophagy in response to anti-HER2 therapies. Finally, we validated these results in clinical samples where GSDMB/Rab7/LC3B co-expression associates significantly with relapse in HER2 breast and gastric cancers. CONCLUSION: Our findings uncover for the first time a functional link between GSDMB over-expression and protective autophagy in response to HER2-targeted therapies. GSDMB behaves like an autophagy adaptor and plays a pivotal role in modulating autophagosome maturation through Rab7 activation. Finally, our results provide a new and accessible therapeutic approach for HER2/GSDMB + cancers with adverse clinical outcome.


Assuntos
Neoplasias da Mama , Receptor ErbB-2 , Animais , Autofagia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Cloroquina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Lapatinib/farmacologia , Camundongos , Recidiva Local de Neoplasia , Proteômica , Receptor ErbB-2/genética , Peixe-Zebra
9.
Biomedicines ; 10(8)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36009591

RESUMO

Neurofibromin is engaged in many cellular processes and when the proper protein functioning is impaired, it causes neurofibromatosis type 1 (NF1), one of the most common inherited neurological disorders. Recent advances in sequencing and screening of the NF1 gene have increased the number of detected variants. However, the correlation of these variants with the clinic remains poorly understood. In this study, we analyzed 4610 germinal NF1 variants annotated in ClinVar and determined on exon level the mutational spectrum and potential pathogenic regions. Then, a binomial and sliding windows test using 783 benign and 938 pathogenic NF1 variants were analyzed against functional and structural regions of neurofibromin. The distribution of synonymous, missense, and frameshift variants are statistically significant in certain regions of neurofibromin suggesting that the type of variant and its associated phenotype may depend on protein disorder. Indeed, there is a negative correlation between the pathogenic fraction prediction and the disorder data, suggesting that the higher an intrinsically disordered region is, the lower the pathogenic fraction is and vice versa. Most pathogenic variants are associated to NF1 and our analysis suggests that GRD, CSRD, TBD, and Armadillo1 domains are hotspots in neurofibromin. Knowledge about NF1 genotype-phenotype correlations can provide prognostic guidance and aid in organ-specific surveillance.

10.
Ann Hematol ; 101(7): 1567-1576, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35525883

RESUMO

Despite advances in the understanding of the pathophysiology of cytomegalovirus (CMV) infection, it remains as one of the most common infectious complications after allogeneic hematopoietic stem cell transplantation (allo-HSCT). The aim of this study was to determine the genotype of cytokines and chemokines in donor and recipient and their association with CMV reactivation. Eighty-five patients receiving an allo-HSCT from an HLA-identical sibling donor were included in the study. Fifty genes were selected for their potential role in the pathogenesis of CMV infection. CMV DNAemia was evaluated until day 180 after allo-HSCT. CMV reactivation was observed in 51/85 (60%) patients. Of the 213 genetic variants selected, 11 polymorphisms in 7 different genes (CXCL12, IL12A, KIR3DL1, TGFB2, TNF, IL1RN, and CD48) were associated with development or protection from CMV reactivation. A predictive model using five of such polymorphisms (CXCL12 rs2839695, IL12A rs7615589, KIR3DL1 rs4554639, TGFB2 rs5781034 for the recipient and CD48 rs2295615 for the donor) together with the development of acute GVHD grade III/IV improved risk stratification of CMV reactivation. In conclusion, the data presented suggest that the screening of five polymorphisms in recipient and donor pre-transplantation could help to predict the individual risk of CMV infection development after HLA-identical allo-HSCT.


Assuntos
Infecções por Citomegalovirus , Transplante de Células-Tronco Hematopoéticas , Citomegalovirus/genética , Infecções por Citomegalovirus/etiologia , Infecções por Citomegalovirus/genética , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Imunogenética , Estudos Retrospectivos , Transplante Homólogo/efeitos adversos
11.
J Heart Lung Transplant ; 41(2): 137-147, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34895840

RESUMO

BACKGROUND: The development of noninvasive approaches for the early diagnosis of acute cellular rejection (ACR), an important complication of cardiac transplantation, is of great importance in clinical practice. We conducted a nontargeted transcriptomic study focused on identifying serum miRNAs to evaluate their diagnostic accuracy for detecting rejection episodes. METHODS: We included consecutive serum samples from transplant recipients undergoing routine endomyocardial biopsies. In the discovery phase (n = 40), an RNA sequencing analysis (Illumina HiSeq 2500 sequencer) was performed. We focused on the validation of miR-144-3p in a larger patient cohort (n = 212), selected based on the criteria of higher accuracy for ACR detection. ACR was assessed according to the International Society for Heart and Lung Transplantation. RESULTS: In the discovery phase, 26 altered miRNAs were identified as potential markers for detecting ACR. miR-144-3p showed the best results, it was the only molecule with an AUC greater than 0.95 to detect Grade ≥2R ACR and it showed significant differences in its levels when we compared Grade 1R ACR with the nonrejection group. In the validation phase, we confirmed this finding, and it had an excellent diagnostic capacity for clinically relevant rejection (Grade ≥2R AUC = 0.801, p < 0.0001), detecting mild rejection (Grade 1R AUC = 0.631, p < 0.01) and was an independent predictor for the presence of ACR (odds ratio of 14.538, p < 0.01). CONCLUSIONS: ACR is associated with the differential expression of specific serum miRNAs that correlate with the severity of the episode. Circulating miR-144-3p is a candidate noninvasive ACR biomarker that could contribute to improving the surveillance of cardiac transplanted patients.


Assuntos
Diagnóstico Precoce , Rejeição de Enxerto/diagnóstico , Transplante de Coração , MicroRNAs/sangue , Transplantados , Doença Aguda , Biomarcadores/sangue , Biópsia , Feminino , Seguimentos , Rejeição de Enxerto/sangue , Rejeição de Enxerto/genética , Humanos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Miocárdio/patologia , Gravidade do Paciente , Estudos Retrospectivos
12.
Am J Cancer Res ; 11(11): 5543-5558, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34873478

RESUMO

Glioblastoma (GBM) is the most common malignant primary brain tumor in adults. This cancer shows rapid, highly infiltrative growth, that invades individually or in small groups the surrounding tissue. The aggressive tumor biology of GBM has devastating consequences with a median survival of 15 months. GBM often has Epidermal Growth Factor Receptor (EGFR) abnormalities. Despite recent advances in the study of GBM tumor biology, it is unclear whether mutations in GBM are related to EGFR amplification and relevant phenotypes like tumor infiltration. This study aimed to perform whole-exome sequencing analysis in 30 human GBM samples for identifying mutational portraits associated with EGFR amplification and infiltrative patterns. Our results show that EGFR-amplified tumors have overall higher mutation rates than EGFR-no-amplified. Six genes out of 2029 candidate genes show mutations associated with EGFR amplification status. Mutations in these genes for GBM are novel, not previously reported in GBM, and with little presence in the TCGA database. GPR179, USP48, and BLK show mutation only in EGFR-amplified cases, and all the affected cases exhibit diffuse infiltrative patterns. On the other hand, mutations in ADGB, EHHADH, and PTPN13, were present only in the EGFR-no-amplified group with a more diverse infiltrative phenotype. Overall, our work identified different mutational portraits of GBM related to well-established features like EGFR amplification and tumor infiltration.

13.
J Pers Med ; 11(9)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34575604

RESUMO

BACKGROUND: Precision medicine is a promising strategy to identify biomarkers, stratify asthmatic patients according to different endotypes, and match them with the appropriate therapy. This proof-of-concept study aimed to investigate whether gene expression in peripheral blood could provide a valuable noninvasive approach for the molecular phenotyping of asthma. METHODS: We performed whole-transcriptome RNA sequencing on peripheral blood of 30 non-atopic non-asthmatic controls and 30 asthmatic patients. A quantitative PCR (qPCR) validation study of PTGDR2 that encodes for CRTH2 receptor, expressed in cells involved in T2 inflammation, was developed in a cohort of 361 independent subjects: 94 non-asthmatic non-atopic controls, 187 asthmatic patients [including 82 with chronic rhinosinusitis with nasal polyposis (CRSwNP) and 24 with aspirin-exacerbated respiratory disease (AERD)], 52 with allergic rhinitis, and 28 with CRSwNP without asthma. RESULTS: PTGDR2 was one of the most differentially overexpressed genes in asthmatic patients' peripheral blood (p-value 2.64 × 106). These results were confirmed by qPCR in the validation study, where PTGDR2 transcripts were significantly upregulated in asthmatic patients (p < 0.001). This upregulation was mainly detected in some subgroups such as allergic asthma, asthma with CRSwNP, AERD, eosinophilic asthma, and severe persistent asthma. PTGDR2 expression was detected in different blood cell types, and its correlation with eosinophil counts showed differences in some groups of asthmatic patients. CONCLUSIONS: We found that PTGDR2 expression levels could identify asthma patients, introduce a minimally invasive biomarker for adult asthma molecular phenotyping, and add additional information to blood eosinophils. Although further studies are required, analyzing PTGDR2 expression levels in peripheral blood of asthmatics might assist in selecting patients for treatment with specific antagonists.

14.
Int J Mol Sci ; 22(8)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918680

RESUMO

Overfishing of sea cucumber Isostichopus badionotus from Yucatan has led to a major population decline. They are being captured as an alternative to traditional species despite a paucity of information about their health-promoting properties. The transcriptome of the body wall of wild and farmed I. badionotus has now been studied for the first time by an RNA-Seq approach. The functional profile of wild I. badionotus was comparable with data in the literature for other regularly captured species. In contrast, the metabolism of first generation farmed I. badionotus was impaired. This had multiple possible causes including a sub-optimal growth environment and impaired nutrient utilization. Several key metabolic pathways that are important in effective handling and accretion of nutrients and energy, or clearance of harmful cellular metabolites, were disrupted or dysregulated. For instance, collagen mRNAs were greatly reduced and deposition of collagen proteins impaired. Wild I. badionotus is, therefore, a suitable alternative to other widely used species but, at present, the potential of farmed I. badionotus is unclear. The environmental or nutritional factors responsible for their impaired function in culture remain unknown, but the present data gives useful pointers to the underlying problems associated with their aquaculture.


Assuntos
Animais Domésticos/genética , Animais Selvagens/genética , Perfilação da Expressão Gênica , Pepinos-do-Mar/genética , Transcriptoma , Animais , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Reprodutibilidade dos Testes
15.
Int J Mol Sci ; 21(24)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33317170

RESUMO

Carotid atherosclerotic plaque rupture can lead to cerebrovascular accident (CVA). By comparing RNA-Seq data from vascular smooth muscle cells (VSMC) extracted from carotid atheroma surgically excised from a group of asymptomatic and symptomatic subjects, we identified more than 700 genomic variants associated with symptomatology (p < 0.05). From these, twelve single nucleotide polymorphisms (SNPs) were selected for further validation. Comparing genotypes of a hospital-based cohort of asymptomatic with symptomatic patients, an exonic SNP in the BIRC6 (BRUCE/Apollon) gene, rs35286811, emerged as significantly associated with CVA symptomatology (p = 0.002; OR = 2.24). Moreover, BIRC6 mRNA levels were significantly higher in symptomatic than asymptomatic subjects upon measurement by qPCR in excised carotid atherosclerotic tissue (p < 0.0001), and significantly higher in carriers of the rs35286811 risk allele (p < 0.0001). rs35286811 is a proxy of a GWAS SNP reported to be associated with red cell distribution width (RDW); RDW was increased in symptomatic patients (p < 0.03), but was not influenced by the rs35286811 genotype in our cohort. BIRC6 is a negative regulator of both apoptosis and autophagy. This work introduces BIRC6 as a novel genetic risk factor for stroke, and identifies autophagy as a genetically regulated mechanism of carotid plaque vulnerability.


Assuntos
Artérias Carótidas/metabolismo , Proteínas Inibidoras de Apoptose/genética , Placa Aterosclerótica/genética , Polimorfismo de Nucleotídeo Único , Artérias Carótidas/patologia , Humanos , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia
17.
Brain ; 143(5): 1414-1430, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32282893

RESUMO

Primary progressive multiple sclerosis is a poorly understood disease entity with no specific prognostic biomarkers and scarce therapeutic options. We aimed to identify disease activity biomarkers in multiple sclerosis by performing an RNA sequencing approach in peripheral blood mononuclear cells from a discovery cohort of 44 untreated patients with multiple sclerosis belonging to different clinical forms and activity phases of the disease, and 12 healthy control subjects. A validation cohort of 58 patients with multiple sclerosis and 26 healthy control subjects was included in the study to replicate the RNA sequencing findings. The RNA sequencing revealed an interleukin 1 beta (IL1B) signature in patients with primary progressive multiple sclerosis. Subsequent immunophenotyping pointed to blood monocytes as responsible for the IL1B signature observed in this group of patients. Functional experiments at baseline measuring apoptosis-associated speck-like protein containing a CARD (ASC) speck formation showed that the NOD-leucine rich repeat and pyrin containing protein 3 (NLRP3) inflammasome was overactive in monocytes from patients with primary progressive multiple sclerosis, and canonical NLRP3 inflammasome activation with a combination of ATP plus lipopolysaccharide was associated with increased IL1B production in this group of patients. Primary progressive multiple sclerosis patients with high IL1B gene expression levels in peripheral blood mononuclear cells progressed significantly faster compared to patients with low IL1B levels based on the time to reach an EDSS of 6.0 and the Multiple Sclerosis Severity Score. In agreement with peripheral blood findings, both NLRP3 and IL1B expression in brain tissue from patients with primary progressive multiple sclerosis was mainly restricted to cells of myeloid lineage. Treatment of mice with a specific NLRP3 inflammasome inhibitor attenuated established experimental autoimmune encephalomyelitis disease severity and improved CNS histopathology. NLRP3 inflammasome-specific inhibition was also effective in reducing axonal damage in a model of lipopolysaccharide-neuroinflammation using organotypic cerebellar cultures. Altogether, these results point to a role of IL1B and the NLRP3 inflammasome as prognostic biomarker and potential therapeutic target, respectively, in patients with primary progressive multiple sclerosis.


Assuntos
Inflamassomos/imunologia , Interleucina-1beta/imunologia , Esclerose Múltipla Crônica Progressiva/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Adulto , Animais , Biomarcadores/análise , Encefalomielite Autoimune Experimental/imunologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Prognóstico
18.
Front Med (Lausanne) ; 7: 624576, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33644088

RESUMO

Background: Asthma is a heterogeneous syndrome with a broad clinical spectrum and high drug response variability. The inflammatory response in asthma involves multiple effector cells and mediator molecules. Based on asthma immunopathogenesis, precision medicine can be a promising strategy for identifying biomarkers. Biologic therapies acting on the IL-5/IL-5 receptor axis have been developed. IL-5 promotes proliferation, differentiation and activation of eosinophils by binding to the IL-5 receptor, located on the surface of eosinophils and basophils. This study aimed to investigate the expression of IL5RA in patients with several types of asthma and its expression after treatment with benralizumab, a biologic directed against IL-5 receptor subunit alpha. Methods: Sixty peripheral blood samples, 30 from healthy controls and 30 from asthmatic patients, were selected for a transcriptomic RNAseq study. Differential expression analysis was performed by statistical assessment of fold changes and P-values. A validation study of IL5RA expression was developed using qPCR in 100 controls and 187 asthmatic patients. The effect of benralizumab on IL5RA expression was evaluated in five patients by comparing expression levels between pretreatment and after 3 months of treatment. The IL5RA mRNA levels were normalized to GAPDH and TBP expression values for each sample. Calculations were made by the comparative ΔΔCt method. All procedures followed the MIQE guidelines. Results: IL5RA was one of the most differentially overexpressed coding transcripts in the peripheral blood of asthmatic patients (P = 8.63E-08 and fold change of 2.22). In the qPCR validation study, IL5RA expression levels were significantly higher in asthmatic patients than in controls (P < 0.001). Significant expression differences were present in different asthmatic types. In the biological drug study, patients treated with benralizumab showed a significant decrease in IL5RA expression and blood eosinophil counts. A notable improvement in ACT and lung function was also observed in these patients. Conclusions: These results indicate that IL5RA is overexpressed in patients with different types of asthma. It could help identify which asthmatic patients will respond more efficiently to benralizumab, moving toward a more personalized asthma management. Although further studies are required, IL5RA could play a role as a biomarker and pharmacogenetic factor in asthma.

19.
EBioMedicine ; 50: 329-342, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31735554

RESUMO

BACKGROUND: The mechanisms underlying autoimmune thyroid disease (AITD) remain elusive. Identification of such mechanisms would reveal novel and/or better therapeutic targets. Here, we use integrated analysis of miRNAs and mRNAs expression profiling to identify potential therapeutic targets involved in the mechanisms underlying AITD. METHODS: miRNA and mRNA from twenty fresh-frozen thyroid tissues (15 from AITD patients and 5 from healthy controls) were subjected to next-generation sequencing. An anti-correlated method revealed potential pathways and disease targets, including proteins involved in the formation of primary cilia. Thus, we examined the distribution and length of primary cilia in thyroid tissues from AITD and controls using immunofluorescence and scanning electron microscopy, and parsed cilia formation in thyroid cell lines in response to inflammatory stimuli in the presence of miRNA mimics. FINDINGS: We found that the expression of miR-21-5p, miR-146b-3p, miR-5571-3p and miR-6503-3p was anti-correlated with Enolase 4 (ENO4), in-turned planar cell polarity protein (INTU), kinesin family member 27 (KIF27), parkin co-regulated (PACRG) and serine/threonine kinase 36 (STK36) genes. Functional classification of these miRNA/mRNAs revealed that their differential expression was associated with cilia organization. We demonstrated that the number and length of primary cilia in thyroid tissues was significantly lower in AITD than in control (frequency of follicular ciliated cells in controls = 67.54% vs a mean of 22.74% and 21.61% in HT and GD respectively p = 0.0001, by one-way ANOVA test). In addition, pro-inflammatory cytokines (IFNγ and TNFα) and specific miRNA mimics for the newly identified target genes affected cilia appearance in thyroid cell lines. INTERPRETATION: Integrated miRNA/gene expression analysis has identified abnormal ciliogenesis as a novel susceptibility pathway that is involved in the pathogenesis of AITD. These results reflect that ciliogenesis plays a relevant role in AITD, and opens research pathways to design therapeutic targets in AITD. FUNDING: Instituto de Salud Carlos III, Comunidad de Madrid, Grupo Español de Tumores Neuroendocrinos y Endocrinos, Ministerio de Economía y Empresa and FEDER.


Assuntos
Doenças Autoimunes/etiologia , Estudos de Associação Genética , Predisposição Genética para Doença , MicroRNAs/genética , RNA Mensageiro/genética , Doenças da Glândula Tireoide/etiologia , Adulto , Doenças Autoimunes/diagnóstico , Autoimunidade , Biomarcadores , Biópsia , Biologia Computacional/métodos , Citocinas/metabolismo , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Imuno-Histoquímica , Mediadores da Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Doenças da Glândula Tireoide/diagnóstico
20.
Front Genet ; 10: 1152, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781178

RESUMO

In recent years, high-throughput next-generation sequencing technology has allowed a rapid increase in diagnostic capacity and precision through different bioinformatics processing algorithms, tools, and pipelines. The identification, annotation, and classification of sequence variants within different target regions are now considered a gold standard in clinical genetic diagnosis. However, this procedure lacks the ability to link regulatory events such as differential splicing to diseases. RNA-seq is necessary in clinical routine in order to interpret and detect among others splicing events and splicing variants, as it would increase the diagnostic rate by up to 10-35%. The transcriptome has a very dynamic nature, varying according to tissue type, cellular conditions, and environmental factors that may affect regulatory events such as splicing and the expression of genes or their isoforms. RNA-seq offers a robust technical analysis of this complexity, but it requires a profound knowledge of computational/statistical tools that may need to be adjusted depending on the disease under study. In this article we will cover RNA-seq analyses best practices applied to clinical routine, bioinformatics procedures, and present challenges of this approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA