Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Structure ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38733995

RESUMO

Immunogenetic studies have shown that specific HLA-B residues (67, 70, 97, and 156) mediate the impact of HLA class I on HIV infection, but the molecular basis is not well understood. Here we evaluate the function of these residues within the protective HLA-B∗5701 allele. While mutation of Met67, Ser70, and Leu156 disrupt CD8+ T cell recognition, substitution of Val97 had no significant impact. Thermal denaturation of HLA-B∗5701-peptide complexes revealed that Met67 and Leu156 maintain HLA-peptide stability, while Ser70 and Leu156 facilitate T cell receptor (TCR) interactions. Analyses of existing structures and structural models suggested that Val97 mediates HLA-peptide binding to inhibitory KIR3DL1 molecules, which was confirmed by experimental assays. These data thereby demonstrate that the genetic basis by which host immunity impacts HIV outcomes occurs by modulating HLA-B-peptide stability and conformation for interaction with TCR and killer immunoglobulin receptor (KIR) molecules. Moreover, they indicate a key role for epitope specificity and HLA-KIR interactions to HIV control.

2.
Nat Commun ; 14(1): 2929, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217466

RESUMO

Cytotoxic-T-lymphocyte (CTL) mediated control of HIV-1 is enhanced by targeting highly networked epitopes in complex with human-leukocyte-antigen-class-I (HLA-I). However, the extent to which the presenting HLA allele contributes to this process is unknown. Here we examine the CTL response to QW9, a highly networked epitope presented by the disease-protective HLA-B57 and disease-neutral HLA-B53. Despite robust targeting of QW9 in persons expressing either allele, T cell receptor (TCR) cross-recognition of the naturally occurring variant QW9_S3T is consistently reduced when presented by HLA-B53 but not by HLA-B57. Crystal structures show substantial conformational changes from QW9-HLA to QW9_S3T-HLA by both alleles. The TCR-QW9-B53 ternary complex structure manifests how the QW9-B53 can elicit effective CTLs and suggests sterically hindered cross-recognition by QW9_S3T-B53. We observe populations of cross-reactive TCRs for B57, but not B53 and also find greater peptide-HLA stability for B57 in comparison to B53. These data demonstrate differential impacts of HLAs on TCR cross-recognition and antigen presentation of a naturally arising variant, with important implications for vaccine design.


Assuntos
Infecções por HIV , Humanos , Antígenos HLA-B/genética , Linfócitos T Citotóxicos , Peptídeos , Epitopos de Linfócito T , Receptores de Antígenos de Linfócitos T
3.
Sci Adv ; 8(32): eabp8155, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35960796

RESUMO

The induction of broadly neutralizing antibodies (bNAbs) is a potential strategy for a vaccine against HIV-1. However, most bNAbs exhibit features such as unusually high somatic hypermutation, including insertions and deletions, which make their induction challenging. VRC01-class bNAbs not only exhibit extraordinary breadth and potency but also rank among the most highly somatically mutated bNAbs. Here, we describe a VRC01-class antibody isolated from a viremic controller, BG24, that is much less mutated than most relatives of its class while achieving comparable breadth and potency. A 3.8-Å x-ray crystal structure of a BG24-BG505 Env trimer complex revealed conserved contacts at the gp120 interface characteristic of the VRC01-class Abs, despite lacking common CDR3 sequence motifs. The existence of moderately mutated CD4-binding site (CD4bs) bNAbs such as BG24 provides a simpler blueprint for CD4bs antibody induction by a vaccine, raising the prospect that such an induction might be feasible with a germline-targeting approach.

4.
Clin Immunol ; 237: 108991, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35364330

RESUMO

Many studies have been performed in severe COVID-19 on immune cells in the circulation and on cells obtained by bronchoalveolar lavage. Most studies have tended to provide relative information rather than a quantitative view, and it is a combination of approaches by various groups that is helping the field build a picture of the mechanisms that drive severe lung disease. Approaches employed to date have not revealed information on lung parenchymal T cell subsets in severe COVID-19. Therefore, we sought to examine early and late T cell subset alterations in the lungs and draining lymph nodes in severe COVID-19 using a rapid autopsy protocol and quantitative imaging approaches. Here, we have established that cytotoxic CD4+ T cells (CD4 + CTLs) increase in the lungs, draining lymph nodes and blood as COVID-19 progresses. CD4 + CTLs are prominently expanded in the lung parenchyma in severe COVID-19. In contrast CD8+ T cells are not prominent, exhibit increased PD-1 expression, and no obvious increase is seen in the number of Granzyme B+ CD8+ T cells in the lung parenchyma in severe COVID-19. Based on quantitative evidence for re-activation in the lung milieu, CD4 + CTLs may be as likely to drive viral clearance as CD8+ T cells and may also be contributors to lung inflammation and eventually to fibrosis in severe COVID-19.


Assuntos
Linfócitos T CD4-Positivos , COVID-19 , Linfócitos T CD8-Positivos , Humanos , Pulmão , Subpopulações de Linfócitos T , Linfócitos T Citotóxicos
5.
Cells ; 11(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35159122

RESUMO

T cell-mediated adaptive immunity plays a key role in immunological surveillance and host control of infectious diseases. A better understanding of T cell receptor (TCR) recognition of pathogen-derived epitopes or cancer-associated neoantigens is the basis for developing T cell-based vaccines and immunotherapies. Studies on the interaction between soluble TCR α:ß heterodimers and peptide-bound major histocompatibility complexes (pMHCs) inform underlying mechanisms driving TCR recognition, but not every isolated TCR can be prepared in soluble form for structural and functional studies using conventional methods. Here, taking a challenging HIV-specific TCR as a model, we designed a general leucine zipper (LZ) dimerization strategy for soluble TCR preparation using the Escherichia coli expression system. We report details of TCR construction, inclusion body expression and purification, and protein refolding and purification. Measurements of binding affinity between the TCR and its specific pMHC using surface plasmon resonance (SPR) verify its activity. We conclude that this is a feasible approach to produce challenging TCRs in soluble form, needed for studies related to T cell recognition.


Assuntos
Escherichia coli , Zíper de Leucina , Dimerização , Escherichia coli/metabolismo , Complexo Principal de Histocompatibilidade , Receptores de Antígenos de Linfócitos T/metabolismo
6.
mBio ; 12(6): e0249021, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34781741

RESUMO

Curing HIV will require eliminating the reservoir of integrated, replication-competent proviruses that persist despite antiretroviral therapy (ART). Understanding the burden, genetic diversity, and longevity of persisting proviruses in diverse individuals with HIV is critical to this goal, but these characteristics remain understudied in some groups. Among them are viremic controllers-individuals who naturally suppress HIV to low levels but for whom therapy is nevertheless recommended. We reconstructed within-host HIV evolutionary histories from longitudinal single-genome amplified viral sequences in four viremic controllers who eventually initiated ART and used this information to characterize the age and diversity of proviruses persisting on therapy. We further leveraged these within-host proviral age distributions to estimate rates of proviral turnover prior to ART. This is an important yet understudied metric, since pre-ART proviral turnover dictates reservoir composition at ART initiation (and thereafter), which is when curative interventions, once developed, would be administered. Despite natural viremic control, all participants displayed significant within-host HIV evolution pretherapy, where overall on-ART proviral burden and diversity broadly reflected the extent of viral replication and diversity pre-ART. Consistent with recent studies of noncontrollers, the proviral pools of two participants were skewed toward sequences that integrated near ART initiation, suggesting dynamic proviral turnover during untreated infection. In contrast, proviruses recovered from the other two participants dated to time points that were more evenly spread throughout infection, suggesting slow or negligible proviral decay following deposition. HIV cure strategies will need to overcome within-host proviral diversity, even in individuals who naturally controlled HIV replication before therapy. IMPORTANCE HIV therapy is lifelong because integrated, replication-competent viral copies persist within long-lived cells. To cure HIV, we need to understand when these viral reservoirs form, how large and genetically diverse they are, and how long they endure. Elite controllers-individuals who naturally suppress HIV to undetectable levels-are being intensely studied as models of HIV remission, but viremic controllers, individuals who naturally suppress HIV to low levels, remain understudied even though they too may hold valuable insights. We combined phylogenetics and mathematical modeling to reconstruct proviral seeding and decay from infection to therapy-mediated suppression in four viremic controllers. We recovered diverse proviruses persisting during therapy that broadly reflected HIV's within-host evolutionary history, where the estimated half-lives of the persistent proviral pool during untreated infection ranged from <1 year to negligible. Cure strategies will need to contend with proviral diversity and between-host heterogeneity, even in individuals who naturally control HIV.


Assuntos
Fármacos Anti-HIV/uso terapêutico , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/genética , Provírus/genética , Viremia/tratamento farmacológico , Viremia/virologia , Idoso , Estudos de Coortes , Controladores de Elite/estatística & dados numéricos , Evolução Molecular , Variação Genética , Genoma Viral , Infecções por HIV/imunologia , HIV-1/classificação , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Filogenia , Provírus/efeitos dos fármacos , Provírus/fisiologia , Carga Viral , Viremia/imunologia , Replicação Viral
7.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34433692

RESUMO

The hallmark of severe COVID-19 is an uncontrolled inflammatory response, resulting from poorly understood immunological dysfunction. We hypothesized that perturbations in FoxP3+ T regulatory cells (Treg), key enforcers of immune homeostasis, contribute to COVID-19 pathology. Cytometric and transcriptomic profiling revealed a distinct Treg phenotype in severe COVID-19 patients, with an increase in Treg proportions and intracellular levels of the lineage-defining transcription factor FoxP3, correlating with poor outcomes. These Tregs showed a distinct transcriptional signature, with overexpression of several suppressive effectors, but also proinflammatory molecules like interleukin (IL)-32, and a striking similarity to tumor-infiltrating Tregs that suppress antitumor responses. Most marked during acute severe disease, these traits persisted somewhat in convalescent patients. A screen for candidate agents revealed that IL-6 and IL-18 may individually contribute different facets of these COVID-19-linked perturbations. These results suggest that Tregs may play nefarious roles in COVID-19, by suppressing antiviral T cell responses during the severe phase of the disease, and by a direct proinflammatory role.


Assuntos
COVID-19/etiologia , Linfócitos T Reguladores/fisiologia , Adulto , Idoso , Linfócitos T CD4-Positivos/virologia , Feminino , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Inflamação/metabolismo , Inflamação/virologia , Interleucina-18/genética , Interleucina-18/metabolismo , Subunidade alfa de Receptor de Interleucina-2/genética , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Linfócitos do Interstício Tumoral/fisiologia , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/virologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Cell ; 184(17): 4401-4413.e10, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34265281

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants that escape convalescent and vaccine-induced antibody responses has renewed focus on the development of broadly protective T-cell-based vaccines. Here, we apply structure-based network analysis and assessments of HLA class I peptide stability to define mutationally constrained CD8+ T cell epitopes across the SARS-CoV-2 proteome. Highly networked residues are conserved temporally among circulating variants and sarbecoviruses and disproportionately impair spike pseudotyped lentivirus infectivity when mutated. Evaluation of HLA class I stabilizing activity for 18 globally prevalent alleles identifies CD8+ T cell epitopes within highly networked regions with limited mutational frequencies in circulating SARS-CoV-2 variants and deep-sequenced primary isolates. Moreover, these epitopes elicit demonstrable CD8+ T cell reactivity in convalescent individuals but reduced recognition in recipients of mRNA-based vaccines. These data thereby elucidate key mutationally constrained regions and immunogenic epitopes in the SARS-CoV-2 proteome for a global T-cell-based vaccine against emerging variants and SARS-like coronaviruses.


Assuntos
Vacinas contra COVID-19/imunologia , Epitopos de Linfócito T , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/química , Antígenos HLA/imunologia , Humanos , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
9.
Cell Rep ; 36(2): 109378, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260940

RESUMO

Defining factors that govern CD8+ T cell immunodominance is critical for the rational design of vaccines for viral pathogens. Here, we assess the contribution of human leukocyte antigen (HLA) class-I-peptide stability for 186 optimal HIV epitopes across 18 HLA alleles using transporter associated with antigen processing (TAP)-deficient mono-allelic HLA-expressing cell lines. We find that immunodominant HIV epitopes increase surface stabilization of HLA class-I molecules in comparison to subdominant epitopes. HLA class-I-peptide stability is also strongly correlated with overall immunodominance hierarchies, particularly for epitopes from high-abundance proteins (e.g., Gag). Moreover, HLA alleles associated with HIV protection are preferentially stabilized by epitopes derived from topologically important viral regions at a greater frequency than neutral and risk alleles. These findings indicate that relative stabilization of HLA class-I is a key factor for CD8+ T cell epitope immunodominance hierarchies, with implications for HIV control and the design of T-cell-based vaccines.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Infecções por HIV/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Epitopos Imunodominantes/imunologia , Peptídeos/imunologia , Alelos , Feminino , Células HEK293 , Humanos , Desnaturação Proteica , Estabilidade Proteica , Propriedades de Superfície
10.
medRxiv ; 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33791730

RESUMO

The contributions of T cells infiltrating the lungs to SARS-CoV-2 clearance and disease progression are poorly understood. Although studies of CD8+ T cells in bronchoalveolar lavage and blood have suggested that these cells are exhausted in severe COVID-19, CD4+ T cells have not been systematically interrogated within the lung parenchyma. We establish here that cytotoxic CD4+ T cells (CD4+CTLs) are prominently expanded in the COVID-19 lung infiltrate. CD4+CTL numbers in the lung increase with disease severity and progression is accompanied by widespread HLA-DR expression on lung epithelial and endothelial cells, increased apoptosis of epithelial cells and tissue remodeling. Based on quantitative evidence for re-activation in the lung milieu, CD4+ CTLs are as likely to drive viral clearance as CD8+ T cells and may also be contributors to lung inflammation and eventually to fibrosis in severe COVID-19. IN BRIEF: In severe COVID-19 cytotoxic CD4+ T cells accumulate in draining lymph nodes and in the lungs during the resolving phase of the disease. Re-activated cytotoxic CD4+ T cells and cytotoxic CD8+ T cells are present in roughly equivalent numbers in the lungs at this stage and these cells likely collaborate to eliminate virally infected cells and potentially induce fibrosis. A large fraction of epithelial and endothelial cells in the lung express HLA class II in COVID-19 and there is temporal convergence between CD4+CTL accumulation and apoptosis in the lung. HIGHLIGHTS: In severe COVID-19, activated CD4+ CTLs accumulate in the lungs late in diseaseThese cells likely participate in SARS-CoV-2 clearance, collaborating with CD8+ T cells many of which exhibit an exhausted phenotypeT cells likely contribute to the late exacerbation of inflammationCD4+CTLs have been linked to fibrosis in many disorders and could also be responsible for the eventual induction of fibrosis in a subset of COVID-19 patients. SUMMARY: The contributions of T cells infiltrating the lungs to SARS-CoV-2 clearance and disease progression are poorly understood. Although studies of CD8+ T cells in bronchoalveolar lavage and blood have suggested that these cells are exhausted in severe COVID-19, CD4+ T cells have not been systematically interrogated within the lung parenchyma. We establish here that cytotoxic CD4+ T cells (CD4+CTLs) are prominently expanded in the COVID-19 lung infiltrate. CD4+CTL numbers in the lung increase with disease severity and progression is accompanied by widespread HLA-DR expression on lung epithelial and endothelial cells, increased apoptosis of epithelial cells and tissue remodeling. Based on quantitative evidence for re-activation in the lung milieu, CD4+ CTLs are as likely to drive viral clearance as CD8+ T cells and may also be contributors to lung inflammation and eventually to fibrosis in severe COVID-19.

11.
bioRxiv ; 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33330871

RESUMO

The hallmark of severe COVID-19 disease has been an uncontrolled inflammatory response, resulting from poorly understood immunological dysfunction. We explored the hypothesis that perturbations in FoxP3+ T regulatory cells (Treg), key enforcers of immune homeostasis, contribute to COVID-19 pathology. Cytometric and transcriptomic profiling revealed a distinct Treg phenotype in severe COVID-19 patients, with an increase in both Treg proportions and intracellular levels of the lineage-defining transcription factor FoxP3, which correlated with poor outcomes. Accordingly, these Tregs over-expressed a range of suppressive effectors, but also pro-inflammatory molecules like IL32. Most strikingly, they acquired similarity to tumor-infiltrating Tregs, known to suppress local anti-tumor responses. These traits were most marked in acute patients with severe disease, but persisted somewhat in convalescent patients. These results suggest that Tregs may play nefarious roles in COVID-19, via suppressing anti-viral T cell responses during the severe phase of the disease, and/or via a direct pro-inflammatory role.

12.
Nat Commun ; 11(1): 5493, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33127906

RESUMO

The relationship between SARS-CoV-2 viral load and risk of disease progression remains largely undefined in coronavirus disease 2019 (COVID-19). Here, we quantify SARS-CoV-2 viral load from participants with a diverse range of COVID-19 disease severity, including those requiring hospitalization, outpatients with mild disease, and individuals with resolved infection. We detected SARS-CoV-2 plasma RNA in 27% of hospitalized participants, and 13% of outpatients diagnosed with COVID-19. Amongst the participants hospitalized with COVID-19, we report that a higher prevalence of detectable SARS-CoV-2 plasma viral load is associated with worse respiratory disease severity, lower absolute lymphocyte counts, and increased markers of inflammation, including C-reactive protein and IL-6. SARS-CoV-2 viral loads, especially plasma viremia, are associated with increased risk of mortality. Our data show that SARS-CoV-2 viral loads may aid in the risk stratification of patients with COVID-19, and therefore its role in disease pathogenesis should be further explored.


Assuntos
Betacoronavirus/isolamento & purificação , Infecções por Coronavirus/virologia , Pneumonia Viral/virologia , Adulto , Idoso , Anticorpos Antivirais/sangue , Betacoronavirus/genética , Betacoronavirus/crescimento & desenvolvimento , Biomarcadores/sangue , Proteína C-Reativa , COVID-19 , Infecções por Coronavirus/sangue , Infecções por Coronavirus/mortalidade , Infecções por Coronavirus/patologia , Feminino , Hospitalização , Humanos , Inflamação/sangue , Inflamação/virologia , Interleucina-6/sangue , Estudos Longitudinais , Massachusetts/epidemiologia , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/sangue , Pneumonia Viral/mortalidade , Pneumonia Viral/patologia , RNA Viral/sangue , SARS-CoV-2 , Índice de Gravidade de Doença , Carga Viral , Viremia/sangue , Viremia/virologia
13.
Cell ; 183(1): 143-157.e13, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32877699

RESUMO

Humoral responses in coronavirus disease 2019 (COVID-19) are often of limited durability, as seen with other human coronavirus epidemics. To address the underlying etiology, we examined post mortem thoracic lymph nodes and spleens in acute SARS-CoV-2 infection and observed the absence of germinal centers and a striking reduction in Bcl-6+ germinal center B cells but preservation of AID+ B cells. Absence of germinal centers correlated with an early specific block in Bcl-6+ TFH cell differentiation together with an increase in T-bet+ TH1 cells and aberrant extra-follicular TNF-α accumulation. Parallel peripheral blood studies revealed loss of transitional and follicular B cells in severe disease and accumulation of SARS-CoV-2-specific "disease-related" B cell populations. These data identify defective Bcl-6+ TFH cell generation and dysregulated humoral immune induction early in COVID-19 disease, providing a mechanistic explanation for the limited durability of antibody responses in coronavirus infections, and suggest that achieving herd immunity through natural infection may be difficult.


Assuntos
Infecções por Coronavirus/imunologia , Centro Germinativo/imunologia , Pneumonia Viral/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Idoso , Idoso de 80 Anos ou mais , Linfócitos B/imunologia , COVID-19 , Feminino , Centro Germinativo/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Baço/imunologia , Baço/patologia , Fator de Necrose Tumoral alfa/metabolismo
14.
Proc Natl Acad Sci U S A ; 117(38): 23835-23846, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32900948

RESUMO

Nef is an HIV-encoded accessory protein that enhances pathogenicity by down-regulating major histocompatibility class I (MHC-I) expression to evade killing by cytotoxic T lymphocytes (CTLs). A potent Nef inhibitor that restores MHC-I is needed to promote immune-mediated clearance of HIV-infected cells. We discovered that the plecomacrolide family of natural products restored MHC-I to the surface of Nef-expressing primary cells with variable potency. Concanamycin A (CMA) counteracted Nef at subnanomolar concentrations that did not interfere with lysosomal acidification or degradation and were nontoxic in primary cell cultures. CMA specifically reversed Nef-mediated down-regulation of MHC-I, but not CD4, and cells treated with CMA showed reduced formation of the Nef:MHC-I:AP-1 complex required for MHC-I down-regulation. CMA restored expression of diverse allotypes of MHC-I in Nef-expressing cells and inhibited Nef alleles from divergent clades of HIV and simian immunodeficiency virus, including from primary patient isolates. Lastly, we found that restoration of MHC-I in HIV-infected cells was accompanied by enhanced CTL-mediated clearance of infected cells comparable to genetic deletion of Nef. Thus, we propose CMA as a lead compound for therapeutic inhibition of Nef to enhance immune-mediated clearance of HIV-infected cells.


Assuntos
HIV-1 , Interações Hospedeiro-Patógeno , Macrolídeos , Linfócitos T Citotóxicos , Células Cultivadas , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/imunologia , Humanos , Macrolídeos/imunologia , Macrolídeos/farmacologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/virologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana
15.
Science ; 370(6520)2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-32994364

RESUMO

Understanding humoral responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical for improving diagnostics, therapeutics, and vaccines. Deep serological profiling of 232 coronavirus disease 2019 (COVID-19) patients and 190 pre-COVID-19 era controls using VirScan revealed more than 800 epitopes in the SARS-CoV-2 proteome, including 10 epitopes likely recognized by neutralizing antibodies. Preexisting antibodies in controls recognized SARS-CoV-2 ORF1, whereas only COVID-19 patient antibodies primarily recognized spike protein and nucleoprotein. A machine learning model trained on VirScan data predicted SARS-CoV-2 exposure history with 99% sensitivity and 98% specificity; a rapid Luminex-based diagnostic was developed from the most discriminatory SARS-CoV-2 peptides. Individuals with more severe COVID-19 exhibited stronger and broader SARS-CoV-2 responses, weaker antibody responses to prior infections, and higher incidence of cytomegalovirus and herpes simplex virus 1, possibly influenced by demographic covariates. Among hospitalized patients, males produce stronger SARS-CoV-2 antibody responses than females.


Assuntos
COVID-19/imunologia , Mapeamento de Epitopos , Epitopos/imunologia , SARS-CoV-2/imunologia , Índice de Gravidade de Doença , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Formação de Anticorpos , COVID-19/sangue , Teste Sorológico para COVID-19 , Reações Cruzadas , Microscopia Crioeletrônica , Epitopos/química , Epitopos/genética , Feminino , Humanos , Masculino , Conformação Proteica , Soroconversão
16.
SSRN ; : 3652322, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32742244

RESUMO

Humoral responses in COVID-19 disease are often of limited durability, as seen with other human coronavirus epidemics. To address the underlying etiology, we examined postmortem thoracic lymph nodes and spleens in acute SARS-CoV-2 infection and observed the absence of germinal centers, a striking reduction in Bcl-6+ germinal center B cells but preservation of AID+ B cells. Absence of germinal centers correlated with an early specific block in Bcl-6+TFH cell differentiation together with an increase in T-bet+TH1 cells and aberrant extra-follicular TNF-a accumulation.  Parallel peripheral blood studies revealed loss of transitional and follicular B cells in severe disease and accumulation of SARS-CoV-2-specific "disease-related" B cell populations. These data identify defective Bcl-6+TFH cell generation and dysregulated humoral immune induction early in COVID-19 disease, providing a mechanistic explanation for the limited durability of antibody responses in coronavirus infections and suggest that achieving herd immunity through natural infection may be difficult. Funding: This work was supported by NIH U19 AI110495 to SP, NIH R01 AI146779 to AGS, NIH R01AI137057 and DP2DA042422 to DL, BMH was supported by NIGMS T32 GM007753, TMC was supported by T32 AI007245. Funding for these studies from the Massachusetts Consortium of Pathogen Readiness, the Mark and Lisa Schwartz Foundation and Enid Schwartz is also acknowledged. Conflict of Interest: None. Ethical Approval: This study was performed with the approval of the Institutional Review Boards at the Massachusetts General Hospital and the Brigham and Women's Hospital.

17.
Science ; 364(6439): 480-484, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-31048489

RESUMO

Mutationally constrained epitopes of variable pathogens represent promising targets for vaccine design but are not reliably identified by sequence conservation. In this study, we employed structure-based network analysis, which applies network theory to HIV protein structure data to quantitate the topological importance of individual amino acid residues. Mutation of residues at important network positions disproportionately impaired viral replication and occurred with high frequency in epitopes presented by protective human leukocyte antigen (HLA) class I alleles. Moreover, CD8+ T cell targeting of highly networked epitopes distinguished individuals who naturally control HIV, even in the absence of protective HLA alleles. This approach thereby provides a mechanistic basis for immune control and a means to identify CD8+ T cell epitopes of topological importance for rational immunogen design, including a T cell-based HIV vaccine.


Assuntos
Vacinas contra a AIDS/genética , Vacinas contra a AIDS/imunologia , Síndrome da Imunodeficiência Adquirida/prevenção & controle , Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , HIV-1/imunologia , Alelos , Sequência Conservada , Antígenos HLA-B/genética , Antígenos HLA-B/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Mutação , Proteoma/genética , Proteoma/imunologia , Replicação Viral , Produtos do Gene gag do Vírus da Imunodeficiência Humana
18.
J Clin Invest ; 128(2): 876-889, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29355843

RESUMO

The presence of persistent, latent HIV reservoirs in CD4+ T cells obstructs current efforts to cure infection. The so-called kick-and-kill paradigm proposes to purge these reservoirs by combining latency-reversing agents with immune effectors such as cytotoxic T lymphocytes. Support for this approach is largely based on success in latency models, which do not fully reflect the makeup of latent reservoirs in individuals on long-term antiretroviral therapy (ART). Recent studies have shown that CD8+ T cells have the potential to recognize defective proviruses, which comprise the vast majority of all infected cells, and that the proviral landscape can be shaped over time due to in vivo clonal expansion of infected CD4+ T cells. Here, we have shown that treating CD4+ T cells from ART-treated individuals with combinations of potent latency-reversing agents and autologous CD8+ T cells consistently reduced cell-associated HIV DNA, but failed to deplete replication-competent virus. These CD8+ T cells recognized and potently eliminated CD4+ T cells that were newly infected with autologous reservoir virus, ruling out a role for both immune escape and CD8+ T cell dysfunction. Thus, our results suggest that cells harboring replication-competent HIV possess an inherent resistance to CD8+ T cells that may need to be addressed to cure infection.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Farmacorresistência Viral , Infecções por HIV/sangue , Infecções por HIV/tratamento farmacológico , Adulto , Antirretrovirais/uso terapêutico , Linfócitos T CD4-Positivos/imunologia , Técnicas de Cocultura , Epitopos , Infecções por HIV/imunologia , HIV-1/imunologia , Humanos , Sistema Imunitário , Masculino , Pessoa de Meia-Idade , Ativação Viral , Latência Viral
19.
J Virol ; 91(22)2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28878089

RESUMO

Immune control of human immunodeficiency virus type 1 (HIV) infection is typically associated with effective Gag-specific CD8+ T-cell responses. We here focus on HLA-B*14, which protects against HIV disease progression, but the immunodominant HLA-B*14-restricted anti-HIV response is Env specific (ERYLKDQQL, HLA-B*14-EL9). A subdominant HLA-B*14-restricted response targets Gag (DRYFKTLRA, HLA-B*14-DA9). Using HLA-B*14/peptide-saporin-conjugated tetramers, we show that HLA-B*14-EL9 is substantially more potent at inhibiting viral replication than HLA-B*14-DA9. HLA-B*14-EL9 also has significantly higher functional avidity (P < 0.0001) and drives stronger selection pressure on the virus than HLA-B*14-DA9. However, these differences were HLA-B*14 subtype specific, applying only to HLA-B*14:02 and not to HLA-B*14:01. Furthermore, the HLA-B*14-associated protection against HIV disease progression is significantly greater for HLA-B*14:02 than for HLA-B*14:01, consistent with the superior antiviral efficacy of the HLA-B*14-EL9 response. Thus, although Gag-specific CD8+ T-cell responses may usually have greater anti-HIV efficacy, factors independent of protein specificity, including functional avidity of individual responses, are also critically important to immune control of HIV.IMPORTANCE In HIV infection, although cytotoxic T lymphocytes (CTL) play a potentially critical role in eradication of viral reservoirs, the features that constitute an effective response remain poorly defined. We focus on HLA-B*14, unique among HLAs associated with control of HIV in that the dominant CTL response is Env specific, not Gag specific. We demonstrate that Env-specific HLA-B*14-restricted activity is substantially more efficacious than the subdominant HLA-B*14-restricted Gag response. Env immunodominance over Gag and strong Env-mediated selection pressure on HIV are observed only in subjects expressing HLA-B*14:02, and not HLA-B*14:01. This reflects the increased functional avidity of the Env response over Gag, substantially more marked for HLA-B*14:02. Finally, we show that HLA-B*14:02 is significantly more strongly associated with viremic control than HLA-B*14:01. These findings indicate that, although Gag-specific CTL may usually have greater anti-HIV efficacy than Env responses, factors independent of protein specificity, including functional avidity, may carry greater weight in mediating effective control of HIV.


Assuntos
Proteína gp160 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Antígeno HLA-B14/imunologia , Imunidade Celular , Peptídeos/imunologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia , Adulto , Linfócitos T CD8-Positivos , Infecções por HIV/patologia , Infecções por HIV/terapia , Humanos
20.
Sci Transl Med ; 9(373)2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28100831

RESUMO

Some HIV-1-infected patients develop broad and potent HIV-1 neutralizing antibodies (bNAbs) that when passively transferred to mice or macaques can treat or prevent infection. However, bNAbs typically fail to neutralize coexisting autologous viruses due to antibody-mediated selection against sensitive viral strains. We describe an HIV-1 controller expressing HLA-B57*01 and HLA-B27*05 who maintained low viral loads for 30 years after infection and developed broad and potent serologic activity against HIV-1. Neutralization was attributed to three different bNAbs targeting nonoverlapping sites on the HIV-1 envelope trimer (Env). One of the three, BG18, an antibody directed against the glycan-V3 portion of Env, is the most potent member of this class reported to date and, as revealed by crystallography and electron microscopy, recognizes HIV-1 Env in a manner that is distinct from other bNAbs in this class. Single-genome sequencing of HIV-1 from serum samples obtained over a period of 9 years showed a diverse group of circulating viruses, 88.5% (31 of 35) of which remained sensitive to at least one of the temporally coincident autologous bNAbs and the individual's serum. Thus, bNAb-sensitive strains of HIV-1 coexist with potent neutralizing antibodies that target the virus and may contribute to control in this individual. When administered as a mix, the three bNAbs controlled viremia in HIV-1YU2-infected humanized mice. Our finding suggests that combinations of bNAbs may contribute to control of HIV-1 infection.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Antígenos HLA-B/imunologia , Antígeno HLA-B27/imunologia , Animais , Linfócitos B/metabolismo , Estudos de Coortes , Cristalografia por Raios X , Epitopos/imunologia , Células HEK293 , Infecções por HIV/imunologia , Humanos , Camundongos , Camundongos Transgênicos , Testes de Neutralização , Carga Viral , Viremia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA