Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
2.
Life (Basel) ; 11(12)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34947839

RESUMO

In this Commentary, the operational definition of cancer stem cells or cancer initiating cells includes the ability of certain cells, found in a heterogeneous mixture of cells within a tumor, which are able to sustain growth of that tumor. However, that concept of cancer stem cells does not resolve the age-old controversy of two opposing hypotheses of the origin of the cancer, namely the stem cell hypothesis versus the de-differentiation or re-programming hypothesis. Moreover, this cancer stem concept has to take into account classic experimental observations, techniques, and concepts, such as the multi-stage, multi-mechanism process of carcinogenesis; roles of mutagenic, cytotoxic and epigenetic mechanisms; the important differences between errors of DNA repair and errors of DNA replication in forming mutations; biomarkers of known characteristics of normal adult organ-specific stem cells and of cancer stem cells; and the characteristics of epigenetic mechanisms involved in the carcinogenic process. In addition, vague and misleading terms, such as carcinogens, immortal and normal cells have to be clarified in the context of current scientific facts. The ultimate integration of all of these historic factors to provide a current understanding of the origin and characteristics of a cancer stem cell, which is required for a rational strategy for prevention and therapy for cancer, does not follow a linear path. Lastly, it will be speculated that there exists evidence of two distinct types of cancer stem cells, one that has its origin in an organ-specific adult stem cell that is 'initiated' in the stem cell stage, expressing the Oct4A gene and not expressing any connexin gene or having functional gap junctional intercellular communication (GJIC). The other cancer stem cell is derived from a stem cell that is initiated early after the Oct4A gene is suppressed and the connexin gene is expressed, which starts early differentiation, but it is blocked from terminal differentiation.

3.
Int J Mol Sci ; 22(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34445682

RESUMO

Dysregulation of gap junction intercellular communication (GJIC) is recognized as one of the key hallmarks for identifying non-genotoxic carcinogens (NGTxC). Currently, there is a demand for in vitro assays addressing the gap junction hallmark, which would have the potential to eventually become an integral part of an integrated approach to the testing and assessment (IATA) of NGTxC. The scrape loading-dye transfer (SL-DT) technique is a simple assay for the functional evaluation of GJIC in various in vitro cultured mammalian cells and represents an interesting candidate assay. Out of the various techniques for evaluating GJIC, the SL-DT assay has been used frequently to assess the effects of various chemicals on GJIC in toxicological and tumor promotion research. In this review, we systematically searched the existing literature to gather papers assessing GJIC using the SL-DT assay in a rat liver epithelial cell line, WB-F344, after treating with chemicals, especially environmental and food toxicants, drugs, reproductive-, cardio- and neuro-toxicants and chemical tumor promoters. We discuss findings derived from the SL-DT assay with the known knowledge about the tumor-promoting activity and carcinogenicity of the assessed chemicals to evaluate the predictive capacity of the SL-DT assay in terms of its sensitivity, specificity and accuracy for identifying carcinogens. These data represent important information with respect to the applicability of the SL-DT assay for the testing of NGTxC within the IATA framework.


Assuntos
Testes de Carcinogenicidade/métodos , Comunicação Celular/fisiologia , Junções Comunicantes/metabolismo , Animais , Bioensaio/métodos , Carcinógenos , Comunicação Celular/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Corantes/metabolismo , Fígado/patologia , Microscopia de Fluorescência/métodos , Ratos
4.
Arch Toxicol ; 95(8): 2883-2889, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34148101

RESUMO

The International Agency for Research on Cancer (IARC) has recently proposed employing "ten key characteristics of human carcinogens" (TKCs) to determine the potential of agents for harmful effects. The TKCs seem likely to confuse the unsatisfactory correlation from testing regimes that have ignored the differences evident when cellular changes are compared in short and long-lived species, with their very different stem cell and somatic cell phylogenies. The proposed characteristics are so broad that their use will lead to an increase in the current unacceptably high rate of false positives. It could be an informative experiment to take well-established approved therapeutics with well-known human safety profiles and test them against this new TKC paradigm. Cancers are initiated and driven by heritable and transient changes in gene expression, expand clonally, and progress via additional associated acquired mutations and epigenetic alterations that provide cells with an evolutionary advantage. The genotoxicity testing protocols currently employed and required by regulation, emphasize testing for the mutational potential of the test agent. Two-year, chronic rodent cancer bioassays are intended to test for the entire spectrum of carcinogenic transformation. The use of cytotoxic doses causing increased, sustained cell proliferation that facilitates accumulated genetic damage leads to a high false-positive rate of tumor induction. Current cancer hazard assessment protocols and weight-of-the-evidence analysis of agent-specific cancer risk align poorly with the pathogenesis of human carcinoma and so need modernization and improvement in ways suggested here.


Assuntos
Carcinogênese/induzido quimicamente , Carcinógenos/toxicidade , Neoplasias/induzido quimicamente , Animais , Testes de Carcinogenicidade/métodos , Carcinógenos/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Testes de Mutagenicidade/métodos , Medição de Risco , Roedores , Sensibilidade e Especificidade
5.
Carcinogenesis ; 42(7): 905-912, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34014276

RESUMO

The 'cancer stem cell' hypothesis has pointed to a specific target for new cancer therapies. The hypothesis is based on the observation that only the 'cancer stem cell' among the other heterogeneous cancer cells can sustain the growth of the cancer. The goal is to identify biomarkers of 'cancer stem cells' to distinguish them from the 'cancer non-stem cells' and normal adult tissue-specific stem cells. This analyst posits a hypothesis that, although all cancers originated from a single cell, there exist two types of 'cancer stem cells' either by the 'Stem Cell hypothesis' or from the 'De-differentiation hypothesis'. It is proposed that there exist two different 'cancer stem cells'. Some 'cancer stem cells' (a) lack the expression of connexins or gap junction genes and lack any form of gap junctional intercellular communication (GJIC) or (b) they have the expressed connexin-coded proteins for functional GJIC but are dysfunctional by some expressed oncogene. This is consistent with the Loewenstein hypothesis that a universal characteristic of cancer cells is they do not have growth control, nor terminally differentiate. This review speculates the normal organ-specific adult stem cell, that is 'initiated', is the origin of the 'cancer stem cells' with expressed Oct4A gene and no expressed connexin genes; whereas the other cancer stem cell has no expressed Oct4A genes but expressed connexin gene, whose coded protein is dysfunctional. Hence. both types of 'cancer stem cells' lack GJIC, for two different reasons, the selective therapies have to be different for these different cell types.


Assuntos
Comunicação Celular , Diferenciação Celular , Conexinas/metabolismo , Neoplasias/patologia , Células-Tronco Neoplásicas/patologia , Fator 3 de Transcrição de Octâmero/metabolismo , Junções Comunicantes/fisiologia , Humanos , Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo
6.
Toxicol Mech Methods ; 30(8): 590-604, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32713235

RESUMO

3-dimensional (3D) cell cultures are being increasingly recognized as physiologically more relevant in vitro models than traditional monolayer cultures, because they better mimic in vivo-like microenvironment, cell-cell and cell-extracellular matrix interactions. Nevertheless, the broader use of 3D models might be limited by requirements for special consumables, equipment, or skills for 3D cell cultures, and by their limited throughput and scalability. In this study, we optimized and adapted a commercially available agarose-micromolding technique to produce scaffold-free spheroid cultures. Brightfield microscopy was used for routine nondestructive and noninvasive evaluation of spheroid formation and growth. The workflow is compatible with manual, as well as high speed automated microscopic image acquisition, and it is supplemented with an in-house developed macro 'Spheroid_Finder' for open source software Fiji to facilitate rapid automated image analysis. This protocol was used to characterize and quantify spheroid formation and growth of two different hepatic cell lines, hTERT immortalized, but non-cancerous, adult human liver stem cell line HL1-hT1, and human hepatocellular carcinoma cell line HepG2, as well as their responses to a model antiproliferative and cytotoxic agent, 5-fluorouracil. The complete protocol provides a simple and ready-to-use solution to initiate scaffold-free spheroid cultures in any laboratory with standard equipment for mammalian in vitro cell culture work. Thus, it allows to increase throughput and scale of spheroid culture experiments, which can be greatly utilized in different areas of biomedical, pharmaceutical and toxicological research.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Fluoruracila/farmacologia , Ensaios de Triagem em Larga Escala , Neoplasias Hepáticas/tratamento farmacológico , Fígado/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Antimetabólitos Antineoplásicos/toxicidade , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Fluoruracila/toxicidade , Células Hep G2 , Humanos , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Esferoides Celulares , Células-Tronco/metabolismo , Células-Tronco/patologia , Fatores de Tempo , Testes de Toxicidade , Fluxo de Trabalho
7.
Dose Response ; 17(3): 1559325819876799, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31565039

RESUMO

To protect the public's health from exposure to physical, chemical, and microbiological agents, it is important that any policy be based on rigorous scientifically based research. The concept of "linear no-threshold" (LNT) has been implemented to provide guideline exposures to these agents. The practical limitation to testing this hypothesis is to provide sufficient samples for experimental or epidemiological studies. While there is no universally accepted understanding of most human diseases, there seems to be better understanding of cancer that might help resolve the "LNT" model. The public's concern, after being exposed to radiation, is the potential of producing cancer. The most rigorous hypothesis of human carcinogenesis is the "multistage, multimechanism" chemical carcinogenesis model. The radiation carcinogenesis LNT model, rarely, if ever, built it into their support. It will be argued that this multistage, multimechanism model of carcinogenesis, involving the "initiation" of a single cell by a mutagen event, followed by chronic exposure to threshold levels of epigenetic agents or conditions that stimulate the clonal expansion of the "initiated" cell, can convert these benign cells to become invasive and metastatic. This "promotion" process can be interrupted, thereby preventing these initiated cells from transitioning to the "progression" process of invasion and metastasis.

8.
Int J Mol Sci ; 20(13)2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31269652

RESUMO

Growing evidence suggests dietary antioxidants reduce the risk of several cancers. Grape seeds extracts (GSE) are a rich source of polyphenols known to have antioxidant, chemopreventive and anticancer properties. Herein, we investigated the in vitro effects and putative action mechanisms of a grape seed extract (GSE) on human breast cancer cells (MCF-7). The effects of GSE were evaluated on cell proliferation, apoptosis and gap-junction-mediated cell-cell communications (GJIC), as basal mechanism involved in the promotion stage of carcinogenesis. GSE (0.05-100 µg/mL) caused a significant dose- and time-dependent inhibition of MCF-7 viability and induced apoptotic cell death, as detected by Annexin-V/Propidium Iodide. Concurrently, GSE induced transient but significant enhancement of GJIC in non-communicating MCF-7 cells, as demonstrated by the scrape-loading/dye-transfer (SL/DT) assay and an early and dose-dependent re-localization of the connexin-43 (Cx43) proteins on plasma membranes, as assayed by immunocytochemistry. Finally, real-time-PCR has evidenced a significant increase in cx43 mRNA expression. The results support the hypothesis that the proliferation inhibition and pro-apoptotic effect of GSE against this breast cancer cell model are mediated by the GJIC improvement via re-localization of Cx43 proteins and up-regulation of cx43 gene, and provide further insight into the action mechanisms underlying the health-promoting action of dietary components.


Assuntos
Anticarcinógenos/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/prevenção & controle , Extrato de Sementes de Uva/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Comunicação Celular/efeitos dos fármacos , Conexina 43/genética , Conexina 43/metabolismo , Feminino , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/metabolismo , Humanos , Células MCF-7 , Regulação para Cima/efeitos dos fármacos
9.
Cancers (Basel) ; 11(1)2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30646567

RESUMO

Early observations showed a lack of growth control and terminal differentiation with a lack of gap junctional intercellular communication (GJIC). Subsequent observations showed that epigenetic tumor promoters and activated oncogenes, which block gap junction function, provide insights into the multi-stage, multi-mechanism carcinogenic process. With the isolation of embryonic induced pluri-potent stem cells and organ-specific adult stem cells, gap junctions were linked to early development. While tumors and tumor cell lines are a heterogeneous mixture of "cancer stem cells" and "cancer non-stem cells", the cancer stem cells seem to be of two types, namely, they express (a) no connexin genes or (b) connexin genes, but do not have functional GJIC. These observations suggest that these "cancer stem cells" originate from normal adult stem cells or from the de-differentiation or re-programming of somatic differentiated cells. This "Concept Paper" provides a hypothesis that "cancer stem cells" either originate from (a) organ-specific adult stem cells before the expression of the connexin genes or (b) organ-specific adult stem cells that just express gap junction genes but that the connexin proteins are rendered dysfunctional by activated oncogenes. Therefore, cancer prevention and therapeutic strategies must account for these two different types of "cancer stem cell".

10.
Adv Exp Med Biol ; 1103: 131-152, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30484227

RESUMO

From the transition of single-cell organisms to multicellularity of metazoans, evolutionary pressures selected new genes and phenotypes to cope with the oxygenation of the Earth's environment, especially via the symbiotic acquisition of the mitochondrial organelle. There were many new genes and phenotypes that appeared, namely, stem cells, low-oxygen-micro-environments to house these genes ("niches"), new epigenetic mechanisms to regulate , selectively, the gene repertoire to control proliferation, differentiation, apoptosis, senescence and DNA protection mechanisms, including antioxidant genes and DNA repair. This transition required a critical regulation of the metabolism of glucose to produce energy for both the stem cell quiescent state and the energy-requiring differentiated state. While the totipotent-, embryonic-, pluripotent-, and a few adult organ-specific stem cells were recognized, only relatively recently, because of the isolation of somatic cell nuclear transfer (SCNT) stem cells and "induced pluripotent stem" cells, challenges to the origin of these "iPS" cells have been made. The isolation and characterization of human MUSE stem cells and more adult organ-specific adult stem cells have indicated that these MUSE cells have many shared characteristics of the "iPS" cells, yet they do not form teratomas but can give rise to the trigeminal cell layers. While the MUSE cells are a subset of human fibroblastic cells, they have not been characterized, yet, for the mitochondrial metabolic genes, either in the stem cell state or during their differentiation processes. A description of other human adult stem cells will be made to set future studies of how the MUSE stem cells compare to all other stem cells.


Assuntos
Evolução Biológica , Mitocôndrias/fisiologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Adultas/citologia , Diferenciação Celular , Humanos , Células-Tronco Pluripotentes Induzidas/citologia
12.
Environ Sci Technol ; 52(17): 10078-10088, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30059226

RESUMO

Cyanotoxins microcystin-LR (MC-LR) and cylindrospermopsin (CYN) represent hazardous waterborne contaminants and potent human hepatotoxins. However, in vitro monolayer cultures of hepatic cell lines were found to recapitulate, poorly, major hepatocyte-specific functions and inadequately predict hepatotoxic effects of MC-LR and CYN. We utilized 3-dimensional (3D), scaffold-free spheroid cultures of human telomerase-immortalized adult liver stem cells HL1-hT1 to evaluate hepatotoxic potential of MC-LR and CYN. In monolayer cultures of HL1-hT1 cells, MC-LR did not induce cytotoxic effects (EC50 > 10 micromol/L), while CYN inhibited cell growth and viability (48h-96h EC50 ≈ 5.5-0.6 micromol/L). Growth and viability of small growing spheroids were inhibited by both cyanotoxins (≥0.1 micromol/L) and were associated with blebbing and disintegration at the spheroid surface. Hepatospheroid damage and viability reduction were observed also in large mature spheroids, with viability 96h-EC50 values being 0.04 micromol/L for MC-LR and 0.1 micromol/L for CYN, and No Observed Effect Concentrations <0.01 micromol/L. Spheroid cultures of adult human liver stem cells HL1-hT1 exhibit sensitivity comparable to cultures of primary hepatocytes and provide a simple, practical, and cost-effective tool, which can be effectively used in environmental and toxicological research, including assessment of hepatotoxic potential and effect-based monitoring of various samples contaminated with toxic cyanobacteria.


Assuntos
Cianobactérias , Toxinas Marinhas , Toxinas Bacterianas , Toxinas de Cianobactérias , Humanos , Fígado , Microcistinas , Células-Tronco
13.
Avicenna J Med Biotechnol ; 9(3): 142-145, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28706610

RESUMO

BACKGROUND: Alternative splicing is an important mechanism that regulates gene expression and function in human cells. OCT4, a crucial pluripotency marker in embryonic stem/carcinoma cells generates several spliced variants in different cell types and cancers. The expression of OCT4 in cancers has been challenged in many studies. The existence of several OCT4 spliced variants and absence of specific discriminating primers is the main reason of this controversy. Therefore, using specific primers and discriminating OCT4 variants from each other might help to reduce these discrepancies in carcinogenesis and stem cell researches. METHODS: 17 various human cancer, pluripotent and normal cells were cultured and their RNAs were extracted. Related cDNAs were synthesized and the expression pattern of OCT4 variants was investigated by RT-PCR assay. PCR products were cloned into pTZ57R/T vector and their authenticity was confirmed by DNA sequencing. RESULTS: Expression pattern of OCT4 variants (OCT4A, OCT4B and OCT4B1) was analyzed by RT-PCR assay and the authenticity of PCR products was confirmed by DNA sequencing. A novel spliced variant of OCT4 was discovered and named as OCT4B3. This variant was very similar to OCT4B2 transcript except that 207-nt of exon 1b is lost. Moreover, the expression pattern of OCT4B3 variant was investigated in 17 human cell types, where its expression was only found in astrocytoma and bladder cancer cell types 1321N1 and 5637, respectively. CONCLUSION: OCT4 variants are differentially expressed in various human cancer cell lines. Moreover, a novel variant of OCT4, OCT4B3, was detected in two human cancer cell lines of bladder carcinoma (5637) and brain astrocytoma (1321N1) for the first time.

14.
Dose Response ; 15(2): 1559325817716585, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28717349

RESUMO

It has been proposed that many human cancers are generated by intrinsic mechanisms that produce "Bad Luck" mutations by the proliferation of organ-specific adult stem cells. There have been serious challenges to this interpretation, including multiple extrinsic factors thought to be correlated with mutations found in cancers associated with these exposures. While support for both interpretations provides some validity, both interpretations ignore several concepts of the multistage, multimechanism process of carcinogenesis, namely, (1) mutations can be generated by both "errors of DNA repair" and "errors of DNA replication," during the "initiation" process of carcinogenesis; (2) "initiated" stem cells must be clonally amplified by nonmutagenic, intrinsic or extrinsic epigenetic mechanisms; (3) organ-specific stem cell numbers can be modified during in utero development, thereby altering the risk to cancer later in life; and (4) epigenetic tumor promoters are characterized by species, individual genetic-, gender-, developmental state-specificities, and threshold levels to be active; sustained and long-term exposures; and exposures in the absence of antioxidant "antipromoters." Because of the inevitability of some of the stem cells generating "initiating" mutations by either "errors of DNA repair" or "errors of DNA replication," a tumor is formed depending on the promotion phase of carcinogenesis. While it is possible to reduce our frequencies of mutagenic "initiated" cells, one can never reduce it to zero. Because of the extended period of the promotion phase of carcinogenesis, strategies to reduce the appearance of cancers must involve the interruption of the promotion of these initiated cells.

15.
J Cell Commun Signal ; 11(1): 79-87, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28220297

RESUMO

This "Commentary" examines an important clinical observation that right-sided colorectal cancers appear less treatable than the left-sided cancers. The concepts of (a) the "initiation/promotion/progression" process, (b) the stem cell hypothesis, (c) the role gap junctional intercellular communication, (d) cancer cells lacking GJIC either because of the non-expression of connexin genes or of non-functional gap junction proteins, and (e) the role of the microbiome in promoting initiated colon stem cells to divide symmetrically or asymmetrically are examined to find an explanation. It has been speculated that "embryonic-like" lesions in the ascending colon are initiated stem cells, promoted via symmetrical cell division, while the polyp-type lesions in the descending colon are initiated stem cells stimulated to divide asymmetrically. To test this hypothesis, experiments could be designed to examine if right-sided lesions might express Oct4A and ABCG2 genes but not any connexin genes, whereas the left-sided lesions might express a connexin gene, but not Oct4A or the ABCG2 genes. Treatment of the right sided lesions might include transcriptional regulators, whereas the left-sided lesions would need to restore the posttranslational status of the connexin proteins.

16.
Crit Rev Oncog ; 22(3-4): 323-352, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29604908

RESUMO

In this article, we review various key issues in cancer development and progression that have important implications for both cancer prevention and treatment: (1) evolutionary aspects of cancer appearance; (2) evidence of organ-specific adult stem cells as cancer-initiating cells; (3) the immortality of cancer-initiating cells; (4) cancer cell loss of growth control, contact inhibition, terminal differentiation, and apoptosis; (5) stem-cell versus de-differentiation theory of carcinogenesis; (6) mutations in cancer; (7) oncogenes and tumor suppressor genes; (8) epigenetics as the rate-limiting step in carcinogenesis; (9) the potential role of cultural, lifestyle, and nutritional behaviors in oncology; and (10) changes of commensal microbial community and its metagenome in carcinogenesis and tumor progression. Relevant, combined evidence is discussed from a standpoint whereby cancer is considered a multifaceted disease requiring integrated biomolecular and clinico-pathological information to design and implement strategies for either primary prevention or therapy.


Assuntos
Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Evolução Molecular , Neoplasias/genética , Neoplasias/metabolismo , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Proliferação de Células/fisiologia , Transformação Celular Neoplásica/patologia , Genes Supressores de Tumor/fisiologia , Humanos , Mutação/fisiologia , Neoplasias/patologia
17.
Genes Cancer ; 7(5-6): 209-17, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27551335

RESUMO

Cancer stem cells (CSCs) pose a challenge in cancer treatment, as these cells can drive tumor growth and are resistant to chemotherapy. Melatonin exerts its oncostatic effects through the estrogen receptor (ER) pathway in cancer cells, however its action in CSCs is unclear. Here, we evaluated the effect of melatonin on the regulation of the transcription factor OCT4 (Octamer Binding 4) by estrogen receptor alpha (ERα) in breast cancer stem cells (BCSCs). The cells were grown as a cell suspension or as anchorage independent growth, for the mammospheres growth, representing the CSCs population and treated with 10 nM estrogen (E2) or 10 µM of the environmental estrogen Bisphenol A (BPA) and 1 mM of melatonin. At the end, the cell growth as well as OCT4 and ERα expression and the binding activity of ERα to the OCT4 was assessed. The increase in number and size of mammospheres induced by E2 or BPA was reduced by melatonin treatment. Furthermore, binding of the ERα to OCT4 was reduced, accompanied by a reduction of OCT4 and ERα expression. Thus, melatonin treatment is effective against proliferation of BCSCs in vitro and impacts the ER pathway, demonstrating its potential therapeutic use in breast cancer.

18.
Toxicol Sci ; 153(1): 174-85, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27413106

RESUMO

Methoxychlor (MXC) and vinclozolin (VIN) are well-recognized endocrine disrupting chemicals known to alter epigenetic regulations and transgenerational inheritance; however, non-endocrine disruption endpoints are also important. Thus, we determined the effects of MXC and VIN on the dysregulation of gap junctional intercellular communication (GJIC) and activation of mitogen-activated protein kinases (MAPKs) in WB-F344 rat liver epithelial cells. Both chemicals induced a rapid dysregulation of GJIC at non-cytotoxic doses, with 30 min EC50 values for GJIC inhibition being 10 µM for MXC and 126 µM for VIN. MXC inhibited GJIC for at least 24 h, while VIN effects were transient and GJIC recovered after 4 h. VIN induced rapid hyperphosphorylation and internalization of gap junction protein connexin43, and both chemicals also activated MAPK ERK1/2 and p38. Effects on GJIC were not prevented by MEK1/2 inhibitor, but by an inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC), resveratrol, and in the case of VIN, also, by a p38 inhibitor. Estrogen (ER) and androgen receptor (AR) modulators (estradiol, ICI 182,780, HPTE, testosterone, flutamide, VIN M2) did not attenuate MXC or VIN effects on GJIC. Our data also indicate that the effects were elicited by the parental compounds of MXC and VIN. Our study provides new evidence that MXC and VIN dysregulate GJIC via mechanisms involving rapid activation of PC-PLC occurring independently of ER- or AR-dependent genomic signaling. Such alterations of rapid intercellular and intracellular signaling events involved in regulations of gene expression, tissue development, function and homeostasis, could also contribute to transgenerational epigenetic effects of endocrine disruptors.


Assuntos
Inseticidas/toxicidade , Fígado/efeitos dos fármacos , Metoxicloro/toxicidade , Oxazóis/toxicidade , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Animais , Comunicação Celular/efeitos dos fármacos , Linhagem Celular , Conexina 43/metabolismo , Junções Comunicantes/efeitos dos fármacos , Fígado/citologia , Fígado/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Ratos , Ratos Endogâmicos F344 , Receptores Androgênicos/metabolismo , Receptores de Estrogênio/metabolismo , Células-Tronco/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
Biology (Basel) ; 5(2)2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27314399

RESUMO

The first anaerobic organism extracted energy for survival and reproduction from its source of nutrients, with the genetic means to ensure protection of its individual genome but also its species survival. While it had a means to communicate with its community via simple secreted molecules ("quorum sensing"), the eventual shift to an aerobic environment led to multi-cellular metazoan organisms, with evolutionary-selected genes to form extracellular matrices, stem cells, stem cell niches, and a family of gap junction or "connexin" genes. These germinal and somatic stem cells responded to extracellular signals that triggered intra-cellular signaling to regulate specific genes out of the total genome. These extra-cellular induced intra-cellular signals also modulated gap junctional intercellular communication (GJIC) in order to regulate the new cellular functions of symmetrical and asymmetrical cell division, cell differentiation, modes of cell death, and senescence. Within the hierarchical and cybernetic concepts, differentiated by neurons organized in the brain of the Homo sapiens, the conscious mind led to language, abstract ideas, technology, myth-making, scientific reasoning, and moral decision-making, i.e., the creation of culture. Over thousands of years, this has created the current collision between biological and cultural evolution, leading to the global "metabolic disease" crisis.

20.
Nutr Cancer ; 68(5): 827-37, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27266532

RESUMO

Altered gap junctional intercellular communication (GJIC) has been associated with chemical carcinogenesis, where both chemical tumor promoters and chemopreventive agents (CPAs) are known to conversely modulate GJIC. The aim of this study was to investigate whether attenuation of chemically inhibited GJIC represents a common outcome induced by different CPAs, which could be effectively evaluated using in vitro methods. Rat liver epithelial cells WB-F344 were pretreated with a CPA for either 30 min or 24 h, and then exposed to GJIC-inhibiting concentration of a selected tumor promoter or environmental toxicant [12-O-tetradecanoylphorbol-13-acetate (TPA), lindane, fluoranthene, 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT), perfluorooctanoic acid (PFOA), or pentachlorophenol]. Out of nine CPAs tested, quercetin and silibinin elicited the most pronounced effects, preventing the dysregulation of GJIC by all the GJIC inhibitors, but DDT. Metformin and curcumin attenuated the effects of three GJIC inhibitors, whereas the other CPAs prevented the effects of two (diallyl sulfide, emodin) or one (indole-3-carbinol, thymoquinone) GJIC inhibitor. Significant attenuation of chemically induced inhibition of GJIC was observed in 27 (50%) out of 54 possible combinations of nine CPAs and six GJIC inhibitors. Our data demonstrate that in vitro evaluation of GJIC can be used as an effective screening tool for identification of chemicals with potential chemopreventive activity.


Assuntos
Anticarcinógenos/farmacologia , Comunicação Celular/efeitos dos fármacos , Junções Comunicantes/efeitos dos fármacos , Animais , Caprilatos/toxicidade , Carcinógenos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Curcumina/farmacologia , DDT/toxicidade , Células Epiteliais/efeitos dos fármacos , Fluorenos/toxicidade , Fluorocarbonos/toxicidade , Junções Comunicantes/metabolismo , Hexaclorocicloexano/toxicidade , Fígado/citologia , Fígado/efeitos dos fármacos , Metformina/farmacologia , Ratos , Ratos Endogâmicos F344 , Acetato de Tetradecanoilforbol/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA