Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 116(1): 165-71, 1998 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-9449841

RESUMO

Wollastonia biflora (L.) DC. plants accumulate the osmoprotectant 3-dimethylsulfoniopropionate (DMSP), particularly when salinized. DMSP is known to be synthesized in the chloroplast from S-methylmethionine (SMM) imported from the cytosol, but the sizes of the chloroplastic and extrachloroplastic pools of these compounds are unknown. We therefore determined DMSP and SMM in mesophyll protoplasts and chloroplasts. Salinization with 30% (v/v) artificial seawater increased protoplast DMSP levels from 4.6 to 6.0 mumol mg-1 chlorophyll (Chl), and chloroplast levels from 0.9 to 1.9 mumol mg-1 Chl. The latter are minimum values because intact chloroplasts leaked DMSP during isolation. Correcting for this leakage, it was estimated that in vivo about one-half of the DMSP is chloroplastic and that stromal DMSP concentrations in control and salinized plants are about 60 and 130 mM, respectively. Such concentrations would contribute significantly to chloroplast osmoregulation and could protect photosynthetic processes from stress injury. SMM levels were measured using a novel mass-spectrometric method. About 40% of the SMM was located in the chloroplast in unsalinized W. biflora plants, as was about 80% in salinized plants; the chloroplastic pool in both cases was approximately 0.1 mumol mg-1 Chl. In contrast, > or = 85% of the SMM was extrachloroplastic in pea (Pisum sativum L.) and spinach (Spinacia oleracea L.), which lack DMSP. DMSP synthesis may be associated with enhanced accumulation of SMM in the chloroplasm.


Assuntos
Cloroplastos/metabolismo , Compostos de Sulfônio/metabolismo , Vitamina U/metabolismo , Aminoácidos/metabolismo , Cinética , Concentração Osmolar , Protoplastos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
2.
Plant Physiol ; 113(4): 1457-1461, 1997 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12223684

RESUMO

Tobacco (Nicotianum tabacum L.) plants engineered to express a sugar beet (Beta vulgaris L.) betaine aldehyde dehydrogenase (BADH) cDNA acquired not only BADH activity, but also three other aldehyde dehydrogenase activities (those measured with 3-dimethylsulfoniopropionaldehyde, 3-aminopropionaldehyde, and 4-aminobutyraldehyde, all of which are natural products). This shows that BADH is not, as believed up to now, a substrate-specific enzyme and that its role may not be limited to glycine betaine synthesis.

3.
Plant Physiol ; 111(4): 965-973, 1996 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12226341

RESUMO

In the flowering plant Wollastonia biflora (L.) DC. the first step in 3-dimethylsulfoniopropionate (DMSP) synthesis is conversion of methionine to S-methylmethionine (SMM) and the last is oxidation of 3-dimethylsulfoniopropionaldehyde (DMSP-ald) (F. James, L. Paquet, S.A. Sparace, D.A. Gage, A.D. Hanson [1995] Plant Physiol 108: 1439-1448). DMSP-ald was shown to undergo rapid, spontaneous decomposition to dimethylsulfide and acrolein. However, it was stable enough (half-life [greater than or equal to] 1 h) in tertiary amine buffers to use as a substrate for enzyme assays. A dehydrogenase catalyzing DMSP-ald oxidation was detected in extracts of W. biflora mesophyll protoplasts. This enzyme had a high affinity for DMSP-ald (Km = 1.5 [mu]M), was subject to substrate inhibition, preferred NAD to NADP, and was immunologically related to plant betaine aldehyde dehydrogenases. After fractionation of protoplast lysates, [greater than or equal to]90% of DMSP-ald dehydrogenase activity was recovered from the chloroplast stromal fraction, whereas the enzyme that mediates SMM synthesis, S-adenosylmethionine:methionine S-methyltransferase, was found exclusively in the cytosolic fraction. Immunohistochemical analysis confirmed that the S-methyltransferase was cytosolic. Intact W. biflora chloroplasts were able to metabolize supplied [35S]SMM to [35S]DMSP. These findings indicate that SMM is made in the cytosol, imported into the chloroplast, and there converted successively to DMSP-ald and DMSP.

4.
Biochimie ; 78(4): 259-66, 1996.
Artigo em Inglês | MEDLINE | ID: mdl-8874801

RESUMO

The tonoplast H(+)-PPase was previously characterized in Acer pseudoplatanus cells (Pugin et al (1991) Plant Sci 73, 23-34; Fraichard et al (1993) Plant Physiol Biochem 31, 349-359). Tonoplast vesicles were obtained from vacuoles isolated from protoplasts of A pseudoplatanus suspension cultures and used to study kinetic effects of Mg2+ and Ca2+ on PPi hydrolysis. The concentrations of ionic species (free Mg2+, free PPi, and MgPPi complexes) were calculated with apparent dissociation constants of 55.3 microM for MgPPi and 59.6 microM for CaPPi. Our results indicated that the substrate of the tonoplast PPase was a MgPPi complex and that free Mg2+ was essential for PPi hydrolysis. With fixed free Mg2+ concentrations, PPase activity showed Michaelis-Menten kinetics with respect to MgPPi. Moreover, free Mg2+ acted as an allosteric activator with a Hill coefficient of 2.4, indicating at least two Mg2+ binding sites on the enzyme. The Mg-imidodiphosphate complex was a competitive inhibitor of the substrate MgPPi but did not change significantly the allosteric activation by free Mg2+. This result confirmed the presence of Mg2+ regulatory sites. Ca2+ acted as an uncompetitive inhibitor of MgPPi hydrolysis. Furthermore, the sensitivity of the H(+)-PPase to Ca2+ increased with decrease in free Mg2+ concentration. Therefore, Ca2+ and Mg2+ may compete for a common binding site. Taken together, our results confirm that activation by free Mg2+ and inhibition by Ca2+ could be involved in the regulation of the PPase activity in vivo.


Assuntos
Cálcio/metabolismo , Magnésio/metabolismo , Pirofosfatases/metabolismo , Árvores/enzimologia , Vacúolos/enzimologia , Regulação Alostérica , Células Cultivadas , Ativação Enzimática , Pirofosfatase Inorgânica , Cinética , Compostos Organofosforados/farmacologia , Pirofosfatases/antagonistas & inibidores , Árvores/citologia
5.
Plant Physiol ; 109(1): 285-292, 1995 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12228595

RESUMO

The tonoplast H+-ATPase of Acer pseudoplatanus has been purified from isolated vacuoles. After solubilization, the purification procedure included size-exclusion and ion-exchange chromatography. The H+-ATPase consists of at least eight subunits, of 95, 66, 56, 54, 40, 38, 31, and 16 kD, that did not cross-react with polyclonal antibodies raised to the plasmalemma ATPase of Arabidopsis thaliana. The 66-kD polypeptide cross-reacted with monoclonal antibodies raised to the 70-kD subunit of the vacuolar H+-ATPase of oat roots. The functional molecular size of the tonoplast H+-ATPase, analyzed in situ by radiation inactivation, was found to be around 400 kD. The 66-kD subunit of the tonoplast H+-ATPase was rapidly phosphorylated by [[gamma]-32P]ATP in vitro. The complete loss of radio-activity in the 66-kD subunit after a short pulse-chase experiment with unlabeled ATP reflected a rapid turnover, which characterizes a phosphorylated intermediate. Phosphoenzyme formed from ATP is an acylphosphate-type compound as shown by its sensitivity to hydroxylamine and alkaline pH. These results lead us to suggest that the tonoplast H+-ATPase of A. pseudoplatanus is a vacuolar-type ATPase that could operate with a plasmalemma-type ATPase catalytic mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA