Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
Nutrients ; 16(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38999899

RESUMO

Background: Hypertension poses a significant global health burden and is associated with cardiovascular morbidity. Chios mastic gum (CMG), derived from Pistacia lentiscus var. Chia, shows potential as a phytotherapeutic agent, due to its multifaceted beneficial effects. However, its anti-hypertensive effects and vascular, circulatory, and renal-related dysfunction, have not been thoroughly investigated. Herein, we aimed to explore the antihypertensive potential of CMG, focusing on vascular and renal endothelium, in vivo. Methods: Two models of hypertension in male rats, induced by Angiotensin II and Deoxycorticosterone acetate (DOCA)-high-salt administration, were utilized. CMG was administered at 220 mg/kg daily for four weeks after hypertension onset and blood pressure was measured non-invasively. Whole blood RNA sequencing, metabolomics, real-time PCR, and Western blot analyses of kidney and aorta tissues were additionally performed. Results: CMG significantly lowered systolic, diastolic, and mean blood pressure in both models. RNA sequencing revealed that CMG modulated immunity in the Angiotensin II model and metabolism in the DOCA-HS model. CMG downregulated genes related to oxidative stress and endothelial dysfunction and upregulated endothelial markers such as Vegfa. Metabolomic analysis indicated improved endothelial homeostasis via lysophosphatidylinositol upregulation. Conclusions: CMG emerges as a potent natural antihypertensive therapy, demonstrating beneficial effects on blood pressure and renal endothelial function.


Assuntos
Anti-Hipertensivos , Pressão Sanguínea , Hipertensão , Pistacia , Animais , Pistacia/química , Masculino , Hipertensão/tratamento farmacológico , Anti-Hipertensivos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Ratos , Rim/efeitos dos fármacos , Rim/metabolismo , Resina Mástique , Modelos Animais de Doenças , Angiotensina II , Ratos Sprague-Dawley , Acetato de Desoxicorticosterona , Estresse Oxidativo/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Extratos Vegetais/farmacologia
2.
Planta Med ; 90(7-08): 512-522, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38843791

RESUMO

The use of Drosophila melanogaster as a biological platform to study the effect of diet and food bioactives on the metabolome remains a highly unexplored subject. Aiming to establish alternative solutions for the investigation of nutritional interventions with bioactive natural products by employing LC-MS-based metabolomics approaches, we assessed the effect of a phytonutrient-rich extract from the endemic Mediterranean plant Cichorium spinosum (stamnagkàthi) on a Drosophila population. The extract's modulating effect on the proteostasis network and metabolism of young D. melanogaster flies was evaluated. Furthermore, an untargeted metabolomics approach, employing a C18 UPLC-ESI-Orbitrap-HRMS/MS platform, permitted the detection of several biomarkers in the metabolic profile of Drosophila's tissues; while targeted amino acid quantification in Drosophila tissue was simultaneously performed by employing aTRAQ labeling and an ion-pairing UPLC-ESI-SWATH-HRMS/MS platform. The detected metabolites belong to different chemical classes, and statistical analysis with chemometrics tools was utilized to reveal patterns and trends, as well as to uncover potential class-distinguishing features and possible biomarkers. Our findings suggest that Drosophila can serve as a valuable in vivo model for investigating the role of bioactive phytoconstituents, like those found in C. spinosum's decoction, on diverse metabolic processes. Additionally, the fruit fly represents a highly effective platform to investigate the molecular mechanisms underlying sex differences in diverse aspects of nutrition and physiology in higher metazoans.


Assuntos
Drosophila melanogaster , Metabolômica , Compostos Fitoquímicos , Animais , Drosophila melanogaster/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Masculino , Feminino , Proteostase/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Metaboloma/efeitos dos fármacos
3.
Redox Biol ; 72: 103134, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643749

RESUMO

The cytoprotective transcription factor NRF2 regulates the expression of several hundred genes in mammalian cells and is a promising therapeutic target in a number of diseases associated with oxidative stress and inflammation. Hence, an ability to monitor basal and inducible NRF2 signalling is vital for mechanistic understanding in translational studies. Due to some caveats related to the direct measurement of NRF2 levels, the modulation of NRF2 activity is typically determined by measuring changes in the expression of one or more of its target genes and/or the associated protein products. However, there is a lack of consensus regarding the most relevant set of these genes/proteins that best represents NRF2 activity across cell types and species. We present the findings of a comprehensive literature search that according to stringent criteria identifies GCLC, GCLM, HMOX1, NQO1, SRXN1 and TXNRD1 as a robust panel of markers that are directly regulated by NRF2 in multiple cell and tissue types. We assess the relevance of these markers in clinically accessible biofluids and highlight future challenges in the development and use of NRF2 biomarkers in humans.


Assuntos
Biomarcadores , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Transdução de Sinais , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Humanos , Animais , Regulação da Expressão Gênica
4.
Front Immunol ; 14: 1292568, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38090597

RESUMO

Introduction: Cytokines and chemokines play an important role in shaping innate and adaptive immunity in response to infection and vaccination. Systems serology identified immunological parameters predictive of beneficial response to the BNT162b2 mRNA vaccine in COVID-19 infection-naïve volunteers, COVID-19 convalescent patients and transplant patients with hematological malignancies. Here, we examined the dynamics of the serum cytokine/chemokine responses after the 3rd BNT162b2 mRNA vaccination in a cohort of COVID-19 infection-naïve volunteers. Methods: We measured serum cytokine and chemokine responses after the 3rd dose of the BNT162b2 mRNA (Pfizer/BioNtech) vaccine in COVID-19 infection-naïve individuals by a chemiluminescent assay and ELISA. Anti-Spike binding antibodies were measured by ELISA. Anti-Spike neutralizing antibodies were measured by a pseudotype assay. Results: Comparison to responses found after the 1st and 2nd vaccinations showed persistence of the coordinated responses of several cytokine/chemokines including the previously identified rapid and transient IL-15, IFN-γ, CXCL10/IP-10, TNF-α, IL-6 signature. In contrast to the transient (24hrs) effect of the IL-15 signature, an inflammatory/anti-inflammatory cytokine signature (CCL2/MCP-1, CCL3/MIP-1α, CCL4/MIP-1ß, CXCL8/IL-8, IL-1Ra) remained at higher levels up to one month after the 2nd and 3rd booster vaccinations, indicative of a state of longer-lasting innate immune change. We also identified a systemic transient increase of CXCL13 only after the 3rd vaccination, supporting stronger germinal center activity and the higher anti-Spike antibody responses. Changes of the IL-15 signature, and the inflammatory/anti-inflammatory cytokine profile correlated with neutralizing antibody levels also after the 3rd vaccination supporting their role as immune biomarkers for effective development of vaccine-induced humoral responses. Conclusion: These data revealed that repeated SARS-Cov-2 BNT162b2 mRNA vaccination induces both rapid transient as well as longer-lasting systemic serum cytokine changes associated with innate and adaptive immune responses. Clinical trial registration: Clinicaltrials.gov, identifier NCT04743388.


Assuntos
COVID-19 , Citocinas , Humanos , Vacina BNT162 , Interleucina-15 , SARS-CoV-2 , COVID-19/prevenção & controle , Imunidade Adaptativa , Vacinação , Anti-Inflamatórios
5.
Cells ; 12(22)2023 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-37998385

RESUMO

The modulation of insulin/insulin-like growth factor signaling (IIS) is associated with altered nutritional and metabolic states. The Drosophila genome encodes eight insulin-like peptides, whose activity is regulated by a group of secreted factors, including Ecdysone-inducible gene L2 (ImpL2), which acts as a potent IIS inhibitor. We recently reported that cncC (cncC/Nrf2), the fly ortholog of Nrf2, is a positive transcriptional regulator of ImpL2, as part of a negative feedback loop aiming to suppress cncC/Nrf2 activity. This finding correlated with our observation that sustained cncC/Nrf2 overexpression/activation (cncCOE; a condition that signals organismal stress) deregulates IIS, causing hyperglycemia, the exhaustion of energy stores in flies' tissues, and accelerated aging. Here, we extend these studies in Drosophila by assaying the functional implication of ImpL2 in cncCOE-mediated metabolic deregulation. We found that ImpL2 knockdown (KD) in cncCOE flies partially reactivated IIS, attenuated hyperglycemia and restored tissue energetics. Moreover, ImpL2 KD largely suppressed cncCOE-mediated premature aging. In support, pharmacological treatment of cncCOE flies with Metformin, a first-line medication for type 2 diabetes, restored (dose-dependently) IIS functionality and extended cncCOE flies' longevity. These findings exemplify the effect of chronic stress in predisposition to diabetic phenotypes, indicating the potential prophylactic role of maintaining normal IIS functionality.


Assuntos
Diabetes Mellitus Tipo 2 , Proteínas de Drosophila , Hiperglicemia , Somatomedinas , Animais , Drosophila/metabolismo , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Insulina/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Somatomedinas/metabolismo
6.
Viruses ; 15(11)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38005927

RESUMO

OBJECTIVE: Severe coronavirus disease 19 (COVID-19) is characterized by a dysregulated inflammatory response, with humoral immunity playing a central role in the disease course. The objective of this study was to assess the immune response and the effects of vaccination in recovered individuals with variable disease severity up to one year following natural infection. METHODS: A prospective cohort study was conducted including patients with laboratory-confirmed COVID-19. Disease severity was classified as mild, moderate, and severe based on clinical presentation and outcomes. Anti-RBD (receptor binding domain) and neutralizing antibodies were evaluated at multiple timepoints during the first year after COVID-19 diagnosis. RESULTS: A total of 106 patients were included; of them, 28 were diagnosed with mild, 38 with moderate, and 40 with severe disease. At least one vaccine dose was administered in 58 individuals during the follow-up. Participants with mild disease presented significantly lower anti-RBD and neutralizing antibodies compared to those with moderate and severe disease up to the 3rd and 6th months after the infection, respectively. After adjusting for covariates, in the third month, severe COVID-19 was associated with significantly higher anti-RBD (ß: 563.09; 95% confidence intervals (CI): 257.02 to 869.17) and neutralizing (ß: 21.47; 95% CI: 12.04 to 30.90) antibodies. Among vaccinated individuals, at the 12th month, a history of moderate disease was associated with significantly higher anti-RBD levels (ß: 5615.19; 95% CI: 657.92 to 10,572.46). CONCLUSIONS: Severe COVID-19 is associated with higher anti-RBD and neutralizing antibodies up to 6 months after the infection. Vaccination of recovered patients is associated with a remarkable augmentation of antibody titers up to one year after COVID-19 diagnosis, regardless of disease severity.


Assuntos
Formação de Anticorpos , COVID-19 , Humanos , Teste para COVID-19 , Estudos Prospectivos , COVID-19/diagnóstico , SARS-CoV-2 , Gravidade do Paciente , Anticorpos Neutralizantes , Vacinação , Anticorpos Antivirais
8.
JACC CardioOncol ; 5(1): 1-21, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36875897

RESUMO

Proteasome inhibitors (PIs) are the backbone of combination treatments for patients with multiple myeloma and AL amyloidosis, while also indicated in Waldenström's macroglobulinemia and other malignancies. PIs act on proteasome peptidases, causing proteome instability due to accumulating aggregated, unfolded, and/or damaged polypeptides; sustained proteome instability then induces cell cycle arrest and/or apoptosis. Carfilzomib, an intravenous irreversible PI, exhibits a more severe cardiovascular toxicity profile as compared with the orally administered ixazomib or intravenous reversible PI such as bortezomib. Cardiovascular toxicity includes heart failure, hypertension, arrhythmias, and acute coronary syndromes. Because PIs are critical components of the treatment of hematological malignancies and amyloidosis, managing their cardiovascular toxicity involves identifying patients at risk, diagnosing toxicity early at the preclinical level, and offering cardioprotection if needed. Future research is required to elucidate underlying mechanisms, improve risk stratification, define the optimal management strategy, and develop new PIs with safe cardiovascular profiles.

9.
J Transl Med ; 21(1): 169, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869333

RESUMO

BACKGROUND: Chemotherapy (CT) is central to the treatment of triple negative breast cancer (TNBC), but drug toxicity and resistance place strong restrictions on treatment regimes. Fasting sensitizes cancer cells to a range of chemotherapeutic agents and also ameliorates CT-associated adverse effects. However, the molecular mechanism(s) by which fasting, or short-term starvation (STS), improves the efficacy of CT is poorly characterized. METHODS: The differential responses of breast cancer or near normal cell lines to combined STS and CT were assessed by cellular viability and integrity assays (Hoechst and PI staining, MTT or H2DCFDA staining, immunofluorescence), metabolic profiling (Seahorse analysis, metabolomics), gene expression (quantitative real-time PCR) and iRNA-mediated silencing. The clinical significance of the in vitro data was evaluated by bioinformatical integration of transcriptomic data from patient data bases: The Cancer Genome Atlas (TCGA), European Genome-phenome Archive (EGA), Gene Expression Omnibus (GEO) and a TNBC cohort. We further examined the translatability of our findings in vivo by establishing a murine syngeneic orthotopic mammary tumor-bearing model. RESULTS: We provide mechanistic insights into how preconditioning with STS enhances the susceptibility of breast cancer cells to CT. We showed that combined STS and CT enhanced cell death and increased reactive oxygen species (ROS) levels, in association with higher levels of DNA damage and decreased mRNA levels for the NRF2 targets genes NQO1 and TXNRD1 in TNBC cells compared to near normal cells. ROS enhancement was associated with compromised mitochondrial respiration and changes in the metabolic profile, which have a significant clinical prognostic and predictive value. Furthermore, we validate the safety and efficacy of combined periodic hypocaloric diet and CT in a TNBC mouse model. CONCLUSIONS: Our in vitro, in vivo and clinical findings provide a robust rationale for clinical trials on the therapeutic benefit of short-term caloric restriction as an adjuvant to CT in triple breast cancer treatment.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Neoplasias de Mama Triplo Negativas , Animais , Camundongos , Humanos , Dieta Redutora , Espécies Reativas de Oxigênio , Obesidade
10.
Cell Mol Life Sci ; 80(4): 100, 2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36933062

RESUMO

Deep sequencing of human tumours has uncovered a previously unappreciated role for epigenetic regulators in tumorigenesis. H3K4 methyltransferase KMT2C/MLL3 is mutated in several solid malignancies, including more than 10% of breast tumours. To study the tumour suppressor role of KMT2C in breast cancer, we generated mouse models of Erbb2/Neu, Myc or PIK3CA-driven tumorigenesis, in which the Kmt2c locus is knocked out specifically in the luminal lineage of mouse mammary glands using the Cre recombinase. Kmt2c knock out mice develop tumours earlier, irrespective of the oncogene, assigning a bona fide tumour suppressor role for KMT2C in mammary tumorigenesis. Loss of Kmt2c induces extensive epigenetic and transcriptional changes, which lead to increased ERK1/2 activity, extracellular matrix re-organization, epithelial-to-mesenchymal transition and mitochondrial dysfunction, the latter associated with increased reactive oxygen species production. Loss of Kmt2c renders the Erbb2/Neu-driven tumours more responsive to lapatinib. Publicly available clinical datasets revealed an association of low Kmt2c gene expression and better long-term outcome. Collectively, our findings solidify the role of KMT2C as a tumour suppressor in breast cancer and identify dependencies that could be therapeutically amenable.


Assuntos
Neoplasias da Mama , Proteínas de Ligação a DNA , Lapatinib , Mitocôndrias , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Transformação Celular Neoplásica/genética , Proteínas de Ligação a DNA/genética , Genes Supressores de Tumor , Lapatinib/farmacologia , Camundongos Knockout , Mitocôndrias/patologia , Transição Epitelial-Mesenquimal
12.
Int J Mol Sci ; 24(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36768927

RESUMO

Bladder cancer (BlCa) represents the sixth most commonly diagnosed type of male malignancy. Due to the clinical heterogeneity of BlCa, novel markers would optimize treatment efficacy and improve prognosis. The small heat shock proteins (sHSP) family is one of the major groups of molecular chaperones responsible for the maintenance of proteome functionality and stability. However, the role of sHSPs in BlCa remains largely unknown. The present study aimed to examine the association between HSPB2 and HSPB3 expression and BlCa progression in patients, and to investigate their role in BlCa cells. For this purpose, a series of experiments including reverse transcription-quantitative PCR, Western blotting, MTT assay and flow cytometry were performed. Initial analyses revealed increased vs. human transitional carcinoma cells, expression levels of the HSPB2 and HSPB3 genes and proteins in high grade BlCa cell lines. Therefore, we then evaluated the clinical significance of the HSPB2 and HSPB3 genes expression levels in bladder tumor samples and matched adjusted normal bladder specimens. Total RNA from 100 bladder tumor samples and 49 paired non-cancerous bladder specimens were isolated, and an accurate SYBR-Green based real-time quantitative polymerase chain reaction (qPCR) protocol was developed to quantify HSPB2 and HSPB3 mRNA levels in the two cohorts of specimens. A significant downregulation of the HSPB2 and HSPB3 genes expression was observed in bladder tumors as compared to matched normal urothelium; yet, increased HSPB2 and HSPB3 levels were noted in muscle-invasive (T2-T4) vs. superficial tumors (TaT1), as well as in high-grade vs. low-grade tumors. Survival analyses highlighted the significantly higher risk for post-treatment disease relapse in TaT1 patients poorly expressing HSPB2 and HSPB3 genes; this effect tended to be inverted in advanced disease stages (muscle-invasive tumors) indicating the biphasic impact of HSPB2, HSPB3 genes in BlCa progression. The pro-survival role of HSPB2 and HSPB3 in advanced tumor cells was also evident by our finding that HSPB2, HSPB3 genes expression silencing in high grade BlCa cells enhanced doxorubicin toxicity. These findings indicate that the HSPB2, HSPB3 chaperone genes have a likely pro-survival role in advanced BlCa; thus, they can be targeted as novel molecular markers to optimize treatment efficacy in BlCa and to limit unnecessary interventions.


Assuntos
Proteínas de Choque Térmico Pequenas , Neoplasias da Bexiga Urinária , Humanos , Masculino , Bexiga Urinária/patologia , Recidiva Local de Neoplasia/genética , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Chaperonas Moleculares/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico HSP27/metabolismo
15.
Eur J Intern Med ; 107: 7-16, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36379820

RESUMO

In the COVID-19 pandemic era, antibody testing against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has proven an invaluable tool and herein we highlight some of the most useful clinical and/or epidemiological applications of humoral immune responses recording. Anti-spike circulating IgGs and SARS-CoV-2 neutralizing antibodies can serve as predictors of disease progression or disease prevention, whereas anti-nucleocapsid antibodies can help distinguishing infection from vaccination. Also, in the era of immunotherapies we address the validity of anti-SARS-CoV-2 antibody monitoring post-infection and/or vaccination following therapies with the popular anti-CD20 monoclonals, as well as in the context of various cancers or autoimmune conditions such as rheumatoid arthritis and multiple sclerosis. Additional crucial applications include population immunosurveillance, either at the general population or at specific communities such as health workers. Finally, we discuss how testing of antibodies in cerebrospinal fluid can inform us on the neurological complications that often accompany COVID-19.


Assuntos
Artrite Reumatoide , COVID-19 , Humanos , SARS-CoV-2 , Pandemias , COVID-19/diagnóstico , Anticorpos Antivirais , Vacinação
16.
Hormones (Athens) ; 22(1): 5-11, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36269544

RESUMO

AIM: To compare the kinetics of neutralizing antibodies (NΑbs) against SARS-CoV-2 after vaccination with the BNT162b2 mRNA vaccine (Comirnaty, Pfizer/BioNTech) between patients with T2DM and healthy controls. METHODS: NAb levels after the BNT162b2 mRNA vaccine were compared between 50 patients with non-insulin treated T2DM and 50 age-, gender-, and BMI-matched healthy controls up to 3 months after the second dose. The median age of both groups was 70 years. RESULTS: On day 1, mean NAbs of the control and T2DM groups were 14.64% (standard error, SE = 2.30) and 14.04% (SE = 2.14), respectively (p value = 0.926). Three weeks later, the mean NAb values were 39.98% (SE = 3.53) in the control group and 40.97% (SE = 3.99) in participants with T2DM (p value = 0.698). One month after the second vaccination, mean NAb values increased to 87.13% (SE = 2.94) in the control group and 89.00% (SE = 2.18) in the T2DM group. Three months after the second vaccine dose, the mean inhibitory titers decreased to 83.49% (SE = 3.82) (control group) and 76.36% (SE = 3.33) (T2DM group). On all occasions, no significant difference was found between the two groups (all p values > 0.05). CONCLUSIONS: Patients with T2DM present similar immunological response to COVID-19 BNT162b2 mRNA vaccine to that of healthy subjects.


Assuntos
COVID-19 , Diabetes Mellitus Tipo 2 , Humanos , Idoso , Lactente , Vacina BNT162 , Voluntários Saudáveis , Estudos Prospectivos , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinas de mRNA
17.
Eur Heart J Cardiovasc Imaging ; 24(5): 643-652, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-35980754

RESUMO

AIM: Ubiquitin-Proteasome System (UPS) is of paramount importance regarding the function of the myocardial cell. Consistently, inhibition of this system has been found to affect myocardium in experimental models; yet, the clinical impact of UPS inhibition on cardiac function has not been comprehensively examined. Our aim was to gain insight into the effect of proteasome inhibition on myocardial mechanics in humans. METHODS AND RESULTS: We prospectively evaluated 48 patients with multiple myeloma and an indication to receive carfilzomib, an irreversible proteasome inhibitor. All patients were initially evaluated and underwent echocardiography with speckle tracking analysis. Carfilzomib was administered according to Kd treatment protocol. Follow-up echocardiography was performed at the 3rd and 6th month. Proteasome activity (PrA) was measured in peripheral blood mononuclear cells.At 3 months after treatment, we observed early left ventricular (LV) segmental dysfunction and deterioration of left atrial (LA) remodelling, which was sustained and more pronounced than that observed in a cardiotoxicity control group. At 6 months, LV and right ventricular functions were additionally attenuated (P < 0.05 for all). These changes were independent of blood pressure, endothelial function, inflammation, and cardiac injury levels. Changes in PrA were associated with changes in global longitudinal strain (GLS), segmental LV strain, and LA markers (P < 0.05 for all). Finally, baseline GLS < -18% or LA strain rate > 1.71 were associated with null hypertension events. CONCLUSION: Inhibition of the UPS induced global deterioration of cardiac function.


Assuntos
Complexo de Endopeptidases do Proteassoma , Disfunção Ventricular Esquerda , Humanos , Estudos Prospectivos , Complexo de Endopeptidases do Proteassoma/farmacologia , Leucócitos Mononucleares , Coração , Função Ventricular Esquerda/fisiologia
18.
Aging Cell ; 21(11): e13715, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36259256

RESUMO

The ubiquitin-proteasome pathway and its functional interplay with other proteostatic and/or mitostatic modules are crucial for cell viability, especially in post-mitotic cells like cardiomyocytes, which are constantly exposed to proteotoxic, metabolic, and mechanical stress. Consistently, treatment of multiple myeloma patients with therapeutic proteasome inhibitors may induce cardiac failure; yet the effects promoted by heart-targeted proteasome dysfunction are not completely understood. We report here that heart-targeted proteasome knockdown in the fly experimental model results in increased proteome instability and defective mitostasis, leading to disrupted cardiac activity, systemic toxicity, and reduced longevity. These phenotypes were partially rescued by either heart targeted- or by dietary restriction-mediated activation of autophagy. Supportively, activation of autophagy by Rapamycin or Metformin administration in flies treated with proteasome inhibitors reduced proteome instability, partially restored mitochondrial function, mitigated cardiotoxicity, and improved flies' longevity. These findings suggest that autophagic inducers represent a novel promising intervention against proteasome inhibitor-induced cardiovascular complications.


Assuntos
Complexo de Endopeptidases do Proteassoma , Inibidores de Proteassoma , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Cardiotoxicidade , Proteoma/metabolismo , Autofagia/genética , Miócitos Cardíacos/metabolismo
20.
Int J Mol Sci ; 23(17)2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36077156

RESUMO

Small heat shock proteins (sHSPs) are ubiquitous ATP-independent chaperones that contribute to the maintenance of proteome integrity and functionality. Recent evidence suggests that sHSPs are ubiquitously expressed in numerous types of tumors and have been proposed to be implicated in oncogenesis and malignant progression. Heat shock protein family B member 2 (HSPB2) is a member of the sHSPs, which is found to be expressed, among others, in human breast cancer cell lines and constitutes an inhibitor of apical caspase activation in the extrinsic apoptotic pathway. In this study, we investigated the potential prognostic significance of HSPB2 mRNA expression levels in breast cancer, which represents the most frequent malignancy in females and one of the three most common cancer types worldwide. To this end, malignant breast tumors along with paired non-cancerous breast tissue specimens were used. HSPB2 expression levels were quantified in these two cohorts using a sensitive and accurate SYBR green-based quantitative real-time polymerase chain reaction (q-RT-PCR). Extensive biostatistical analyses were performed including Kaplan-Meier and Cox regression survival analyses for the assessment of the results. The significant downregulation of HSPB2 gene expression was revealed in breast tumors compared to their adjacent non-cancerous breast tissues. Notably, high HSPB2 mRNA expression predicts poor disease-free survival and overall survival of breast cancer patients. Multivariate Cox regression analysis revealed that HSPB2 mRNA overexpression is a significant predictor of poor prognosis in breast cancer, independent of other clinicopathological factors. In conclusion, high HSPB2 mRNA expression levels are associated with breast cancer patients' relapse and poor survival.


Assuntos
Neoplasias da Mama , Proteínas de Choque Térmico Pequenas , Apoptose , Biomarcadores Tumorais/genética , Neoplasias da Mama/patologia , Feminino , Proteínas de Choque Térmico HSP27/metabolismo , Humanos , Recidiva Local de Neoplasia/genética , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA