Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 88(1): 013709, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28147693

RESUMO

Relativistic, magnetically focused proton radiography was invented at Los Alamos National Laboratory using the 800 MeV LANSCE beam and is inherently well-suited to imaging dense objects, at areal densities >20 g cm-2. However, if the unscattered portion of the transmitted beam is removed at the Fourier plane through inverse-collimation, this system becomes highly sensitive to very thin media, of areal densities <100 mg cm-2. Here, this inverse-collimation scheme is described in detail and demonstrated by imaging Xe gas with a shockwave generated by an aluminum plate compressing the gas at Mach 8.8. With a 5-mrad inverse collimator, an areal density change of just 49 mg cm-2 across the shock front is discernible with a contrast-to-noise ratio of 3. Geant4 modeling of idealized and realistic proton transports can guide the design of inverse-collimators optimized for specific experimental conditions and show that this technique performs better for thin targets with reduced incident proton beam emittance. This work increases the range of areal densities to which the system is sensitive to span from ∼25 mg cm-2 to 100 g cm-2, exceeding three orders of magnitude. This enables the simultaneous imaging of a dense system as well as thin jets and ejecta material that are otherwise difficult to characterize with high-energy proton radiography.

2.
Sci Adv ; 1(6): e1500188, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26601219

RESUMO

A central issue in material science is to obtain understanding of the electronic correlations that control complex materials. Such electronic correlations frequently arise because of the competition of localized and itinerant electronic degrees of freedom. Although the respective limits of well-localized or entirely itinerant ground states are well understood, the intermediate regime that controls the functional properties of complex materials continues to challenge theoretical understanding. We have used neutron spectroscopy to investigate plutonium, which is a prototypical material at the brink between bonding and nonbonding configurations. Our study reveals that the ground state of plutonium is governed by valence fluctuations, that is, a quantum mechanical superposition of localized and itinerant electronic configurations as recently predicted by dynamical mean field theory. Our results not only resolve the long-standing controversy between experiment and theory on plutonium's magnetism but also suggest an improved understanding of the effects of such electronic dichotomy in complex materials.

3.
J Nanosci Nanotechnol ; 10(1): 49-59, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20352810

RESUMO

The hindered rotations of molecular hydrogen adsorbed at low loadings into a number of partially ion-exchanged zeolites A, Y and X have been studied at low temperatures with the use of inelastic neutron scattering (INS) techniques. The factors that determine the sorption sites and strength of the interaction with the host material are found to be a complex combination of the type, charge and size of the cations, their coordination to the host framework, and accessibility to the hydrogen molecule as well as the relative acidity of the framework, and lead to important criteria for the development of more effective hybrid materials for hydrogen storage. The highest barriers to rotation were found for the undercoordinated, exposed Li+ cations in LiA and in LiX. Interaction with the extra framework Cu2+ and Zn2+ cations in zeolite A is found to be noticeably stronger than with the neutral Zn- or Cu- containing clusters in metal-organic framework compounds. Our observation that binding of hydrogen in these charged frameworks is strongly enhanced relative to those that are neutral suggests an important approach to improvement of porous materials as ambient temperature hydrogen storage media.

4.
J Chem Phys ; 127(13): 134505, 2007 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-17919035

RESUMO

In situ neutron inelastic scattering experiments on hydrogen adsorbed into a fully deutrated tetrahydrofuran-water ice clathrate show that the adsorbed hydrogen has three rotational excitations (transitions between J=0 and 1 states) at approximately 14 meV in both energy gain and loss. These transitions could be unequivocally assigned since there was residual orthohydrogen at low temperatures (slow conversion to the ground state) resulting in an observable J=1-->0 transition at 5 K (kT=0.48 meV). A doublet in neutron energy loss at approximately 28.5 meV is interpreted as J=1-->2 transitions. In addition to the transitions between rotational states, there are a series of peaks that arise from transitions between center-of-mass translational quantum states of the confined hydrogen molecule. A band at approximately 9 meV can be unequivocally interpreted as a transition between translational states, while broad features at 20, 25, 35, and 50-60 meV are also interpreted to as transitions between translational quantum states. A detailed comparison is made with a recent five-dimensional quantum treatment of hydrogen in the smaller dodecahedral cage in the SII ice-clathrate structure. Although there is broad agreement regarding the features such as the splitting of the J=1 degeneracy, the magnitude of the external potential is overestimated. The numerous transitions between translational states predicted by this model are in poor agreement with the experimental data. Comparisons are also made with three simple exactly solved models, namely, a particle in a box, a particle in a sphere, and a particle on the surface of a sphere. Again, there are too many predicted features by the first two models, but there is reasonable agreement with the particle on a sphere model. This is consistent with published quantum chemistry results for hydrogen in the dodecahedral 5(12) cage, where the center of the cage is found to be energetically unfavorable, resulting in a shell-like confinement for the hydrogen molecule wave function. These results demonstrate that translational quantum effects are very significant and a classical treatment of the hydrogen molecule dynamics is inappropriate under such conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA