Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Appl Microbiol ; 125(3): 777-791, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29762885

RESUMO

AIMS: Obtain varieties of Gluconacetobacter hansenii from original strain ATCC 23729 with greater efficiency to produce bacterial cellulose (BC) membrane with better dry mass yield for application as support of sustained antimicrobials' drug release. METHODS AND RESULTS: Application of different chemical and physical conditions (pH, temperature and UV light exposure) to obtain different G. hansenii varieties with high capacity to produce BC membranes. Characterization of the G. hansenii variants was performed by scanning electron microscopy (SEM) and optical microscopy of the colony-forming units. BC membrane produced was characterized by SEM, infrared spectroscopy and X-ray diffraction. The BC produced by variants isolated after incubation at 35°C showed elevated dry mass yield and high capacity of retention and sustained release of ceftriaxone antibiotic with the produced BC by original G. hansenii ATCC 23769 strain subjected to incubation at 28°C and with commercial BC. CONCLUSION: The application of different chemical and physical conditions constitutes an important method to obtain varieties of micro-organisms with dissimilar metabolism advantageous in relation to the original strain in the BC production. SIGNIFICANCE AND IMPACT OF THE STUDY: These results demonstrate the importance of in vivo studies for the application, in medicine, of BC membranes as support for antimicrobial-sustained release for the skin wound treatment.


Assuntos
Anti-Infecciosos/farmacocinética , Celulose , Preparações de Ação Retardada/química , Gluconacetobacter , Ceftriaxona/farmacocinética , Celulose/química , Celulose/metabolismo , Celulose/ultraestrutura , Gluconacetobacter/química , Gluconacetobacter/metabolismo , Microscopia Eletrônica de Varredura , Difração de Raios X
2.
J Pept Res ; 65(5): 502-11, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15853944

RESUMO

Bacterial DNA gyrase, has been identified as the target of several antibacterial agents, including the coumarin drugs. The coumarins inhibit the gyrase action by competitive binding to the ATP-binding site of DNA gyrase B (GyrB) protein. The high in vitro inhibitory potency of coumarins against DNA gyrase reactions has raised interest in studies on coumarin-gyrase interactions. In this context, a series of low-molecular weight peptides, including the coumarin resistance-determining region of subunit B of Escherichia coli gyrase, has been designed and synthesized. The first peptide model was built using the natural fragment 131-146 of GyrB and was able to bind to novobiocin (K(a) = 1.8 +/- 0.2 x 10(5)/m) and ATP (K(a) = 1.9 +/- 0.4 x 10(3)/m). To build the other sequences, changes in the Arg(136) residue were introduced so that the binding to the drug was progressively reduced with the hydrophobicity of this residue (K(a) = 1.3 +/- 0.1 x 10(5)/m and 1.0 +/- 0.2 x 10(5)/m for Ser and His, respectively). No binding was observed for the change Arg(136) to Leu. In contrast, the binding to ATP was not altered, independently of the changes promoted. On the contrary, for peptide-coumarin and peptide-ATP complexes, Mg(2+) appears to modulate the binding process. Our results demonstrate the crucial role of Arg(136) residue for the stability of coumarin-gyrase complex as well as suggest a different binding site for ATP and in both cases the interactions are mediated by magnesium ions.


Assuntos
Cumarínicos/metabolismo , DNA Girase/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Arginina/metabolismo , Sítios de Ligação , Ligação Competitiva , Cromatografia de Afinidade , Cumarínicos/química , DNA Girase/química , Desenho de Fármacos , Proteínas de Escherichia coli , Magnésio/química , Magnésio/metabolismo , Dados de Sequência Molecular , Novobiocina/química , Novobiocina/metabolismo , Fragmentos de Peptídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA