Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Epigenetics Chromatin ; 17(1): 32, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39487536

RESUMO

Canonical histone H3 and histone variant H3.3 are posttranslationally modified with the genomic distribution of these marks denoting different features and these modifications may influence transcription. While the majority of posttranslational modifications occur on histone tails, there are defined modifications within the globular domain, such as acetylation of H3K122/H3.3K122. To understand the function of the amino acid H3.3K122 in transcriptional regulation, we attempted to generate H3.3K122A mouse embryonic stem (mES) cells but were unsuccessful. Through multi-omic profiling of mutant cell lines harboring two or three of four H3.3 targeted alleles, we have uncovered that H3.3K122A is neomorphic and results in lethality. This is surprising as prior studies demonstrate H3.3-null mES cells are viable and pluripotent but exhibit a reduced differentiation capacity. Together, these studies have uncovered a novel dependence of a globular domain residue within H3.3 for viability and broadened our understanding of how histone variants contribute to transcription regulation and pluripotency in mES cells.


Assuntos
Histonas , Células-Tronco Embrionárias Murinas , Fenótipo , Animais , Histonas/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Diferenciação Celular , Processamento de Proteína Pós-Traducional , Acetilação
2.
Res Sq ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39257982

RESUMO

The histone variant H3.3 acts in coordination with histone posttranslational modifications and other chromatin features to facilitate appropriate transcription. Canonical histone H3 and histone variant H3.3 are post-translationally modified with the genomic distribution of these marks denoting different features and with more recent evidence suggesting that these modifications may influence transcription. While the majority of posttranslational modifications occur on histone tails, there are defined modifications within the globular domain, such as acetylation of H3K122/H3.3K122. To understand the function of the residue H3.3K122 in transcriptional regulation, we attempted to generate H3.3K122A mouse embryonic stem (mES) cells but were unsuccessful. Through multi-omic profiling of mutant cell lines harboring two or three of four H3.3 targeted alleles, we have uncovered that H3.3K122A is neomorphic and results in lethality. This is surprising as prior studies demonstrate H3.3-null mES cells are viable and pluripotent, albeit with reduced differentiation capacity. Together, these studies have uncovered a novel dependence of a globular domain residue of H3.3 for viability and broadened our understanding of how histone variants contribute to transcription regulation and pluripotency in mES cells.

4.
BMC Genomics ; 24(1): 201, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055726

RESUMO

BACKGROUND: Nucleosome remodeling factors regulate the occupancy and positioning of nucleosomes genome-wide through ATP-driven DNA translocation. While many nucleosomes are consistently well-positioned, some nucleosomes and alternative nucleosome structures are more sensitive to nuclease digestion or are transitory. Fragile nucleosomes are nucleosome structures that are sensitive to nuclease digestion and may be composed of either six or eight histone proteins, making these either hexasomes or octasomes. Overlapping dinucleosomes are composed of two merged nucleosomes, lacking one H2A:H2B dimer, creating a 14-mer wrapped by ~ 250 bp of DNA. In vitro studies of nucleosome remodeling suggest that the collision of adjacent nucleosomes by sliding stimulates formation of overlapping dinucleosomes. RESULTS: To better understand how nucleosome remodeling factors regulate alternative nucleosome structures, we depleted murine embryonic stem cells of the transcripts encoding remodeler ATPases BRG1 or SNF2H, then performed MNase-seq. We used high- and low-MNase digestion to assess the effects of nucleosome remodeling factors on nuclease-sensitive or "fragile" nucleosome occupancy. In parallel we gel-extracted MNase-digested fragments to enrich for overlapping dinucleosomes. We recapitulate prior identification of fragile nucleosomes and overlapping dinucleosomes near transcription start sites, and identify enrichment of these features around gene-distal DNaseI hypersensitive sites, CTCF binding sites, and pluripotency factor binding sites. We find that BRG1 stimulates occupancy of fragile nucleosomes but restricts occupancy of overlapping dinucleosomes. CONCLUSIONS: Overlapping dinucleosomes and fragile nucleosomes are prevalent within the ES cell genome, occurring at hotspots of gene regulation beyond their characterized existence at promoters. Although neither structure is fully dependent on either nucleosome remodeling factor, both fragile nucleosomes and overlapping dinucleosomes are affected by knockdown of BRG1, suggesting a role for the complex in creating or removing these structures.


Assuntos
Proteínas de Ligação a DNA , Nucleossomos , Animais , Camundongos , Nucleossomos/genética , Proteínas de Ligação a DNA/genética , Histonas/metabolismo , Células-Tronco Embrionárias/metabolismo , Sítios de Ligação
5.
Mol Cell Oncol ; 7(5): 1776086, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32944634

RESUMO

Disruption of chromatin structure could enable early carcinogenesis by facilitating malignant transformation. Using stochastic optical reconstruction microscopy optimized for pathological tissue (PathSTORM), we uncovered a gradual decompaction of higher-order chromatin folding through progressive stages of carcinogenesis. We demonstrated potential detection of pre-cancerous genomic architecture not easily discernible by conventional pathology.

6.
Hepatol Commun ; 4(6): 859-875, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32490322

RESUMO

Hepatocyte nuclear factor 4 alpha (HNF4α) is a transcription factor that plays a critical role in hepatocyte function, and HNF4α-based reprogramming corrects terminal liver failure in rats with chronic liver disease. In the livers of patients with advanced cirrhosis, HNF4α RNA expression levels decrease as hepatic function deteriorates, and protein expression is found in the cytoplasm. These findings could explain impaired hepatic function in patients with degenerative liver disease. In this study, we analyzed HNF4α localization and the pathways involved in post-translational modification of HNF4α in human hepatocytes from patients with decompensated liver function. RNA-sequencing analysis revealed that AKT-related pathways, specifically phospho-AKT, is down-regulated in cirrhotic hepatocytes from patients with terminal failure, in whom nuclear levels of HNF4α were significantly reduced, and cytoplasmic expression of HNF4α was increased. cMET was also significantly reduced in failing hepatocytes. Moreover, metabolic profiling showed a glycolytic phenotype in failing human hepatocytes. The contribution of cMET and phospho-AKT to nuclear localization of HNF4α was confirmed using Spearman's rank correlation test and pathway analysis, and further correlated with hepatic dysfunction by principal component analysis. HNF4α acetylation, a posttranslational modification important for nuclear retention, was also significantly reduced in failing human hepatocytes when compared with normal controls. Conclusion: These results suggest that the alterations in the cMET-AKT pathway directly correlate with HNF4α localization and level of hepatocyte dysfunction. This study suggests that manipulation of HNF4α and pathways involved in HNF4α posttranslational modification may restore hepatocyte function in patients with terminal liver failure.

7.
Nat Commun ; 11(1): 1899, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32313005

RESUMO

Genomic DNA is folded into a higher-order structure that regulates transcription and maintains genomic stability. Although progress has been made on understanding biochemical characteristics of epigenetic modifications in cancer, the in-situ higher-order folding of chromatin structure during malignant transformation remains largely unknown. Here, using optimized stochastic optical reconstruction microscopy (STORM) for pathological tissue (PathSTORM), we uncover a gradual decompaction and fragmentation of higher-order chromatin folding throughout all stages of carcinogenesis in multiple tumor types, and prior to tumor formation. Our integrated imaging, genomic, and transcriptomic analyses reveal functional consequences in enhanced transcription activities and impaired genomic stability. We also demonstrate the potential of imaging higher-order chromatin disruption to detect high-risk precursors that cannot be distinguished by conventional pathology. Taken together, our findings reveal gradual decompaction and fragmentation of higher-order chromatin structure as an enabling characteristic in early carcinogenesis to facilitate malignant transformation, which may improve cancer diagnosis, risk stratification, and prevention.


Assuntos
Carcinogênese/patologia , Cromatina/patologia , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência/métodos , Neoplasias/diagnóstico por imagem , Animais , Biofísica , Epigênese Genética , Genoma , Heterocromatina , Humanos , Masculino , Camundongos , Neoplasias/patologia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA