Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 45(W1): W300-W306, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28520987

RESUMO

Profiling of proteome dynamics is crucial for understanding cellular behavior in response to intrinsic and extrinsic stimuli and maintenance of homeostasis. Over the last 20 years, mass spectrometry (MS) has emerged as the most powerful tool for large-scale identification and characterization of proteins. Bottom-up proteomics, the most common MS-based proteomics approach, has always been challenging in terms of data management, processing, analysis and visualization, with modern instruments capable of producing several gigabytes of data out of a single experiment. Here, we present ProteoSign, a freely available web application, dedicated in allowing users to perform proteomics differential expression/abundance analysis in a user-friendly and self-explanatory way. Although several non-commercial standalone tools have been developed for post-quantification statistical analysis of proteomics data, most of them are not end-user appealing as they often require very stringent installation of programming environments, third-party software packages and sometimes further scripting or computer programming. To avoid this bottleneck, we have developed a user-friendly software platform accessible via a web interface in order to enable proteomics laboratories and core facilities to statistically analyse quantitative proteomics data sets in a resource-efficient manner. ProteoSign is available at http://bioinformatics.med.uoc.gr/ProteoSign and the source code at https://github.com/yorgodillo/ProteoSign.


Assuntos
Proteômica/métodos , Software , Interpretação Estatística de Dados , Internet , Espectrometria de Massas
2.
Elife ; 4: e09545, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-26512888

RESUMO

Cholera toxin (CT) enters and intoxicates host cells after binding cell surface receptors using its B subunit (CTB). The ganglioside (glycolipid) GM1 is thought to be the sole CT receptor; however, the mechanism by which CTB binding to GM1 mediates internalization of CT remains enigmatic. Here we report that CTB binds cell surface glycoproteins. Relative contributions of gangliosides and glycoproteins to CTB binding depend on cell type, and CTB binds primarily to glycoproteins in colonic epithelial cell lines. Using a metabolically incorporated photocrosslinking sugar, we identified one CTB-binding glycoprotein and demonstrated that the glycan portion of the molecule, not the protein, provides the CTB interaction motif. We further show that fucosylated structures promote CTB entry into a colonic epithelial cell line and subsequent host cell intoxication. CTB-binding fucosylated glycoproteins are present in normal human intestinal epithelia and could play a role in cholera.


Assuntos
Toxina da Cólera/metabolismo , Proteínas de Membrana/metabolismo , Processamento de Proteína Pós-Traducional , Receptores de Superfície Celular/metabolismo , Linhagem Celular , Células Epiteliais/metabolismo , Gangliosídeo G(M1)/metabolismo , Glicosilação , Humanos , Ligação Proteica
3.
PLoS Pathog ; 11(8): e1005128, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26305100

RESUMO

The type VI secretion system (T6SS) is a widespread protein secretion apparatus used by Gram-negative bacteria to deliver toxic effector proteins into adjacent bacterial or host cells. Here, we uncovered a role in interbacterial competition for the two T6SSs encoded by the marine pathogen Vibrio alginolyticus. Using comparative proteomics and genetics, we identified their effector repertoires. In addition to the previously described effector V12G01_02265, we identified three new effectors secreted by T6SS1, indicating that the T6SS1 secretes at least four antibacterial effectors, of which three are members of the MIX-effector class. We also showed that the T6SS2 secretes at least three antibacterial effectors. Our findings revealed that many MIX-effectors belonging to clan V are "orphan" effectors that neighbor mobile elements and are shared between marine bacteria via horizontal gene transfer. We demonstrated that a MIX V-effector from V. alginolyticus is a functional T6SS effector when ectopically expressed in another Vibrio species. We propose that mobile MIX V-effectors serve as an environmental reservoir of T6SS effectors that are shared and used to diversify antibacterial toxin repertoires in marine bacteria, resulting in enhanced competitive fitness.


Assuntos
Toxinas Bacterianas/genética , Genes Bacterianos/genética , Sistemas de Secreção Tipo VI/genética , Vibrio alginolyticus/genética , Sequência de Aminoácidos , Sequência de Bases , Transferência Genética Horizontal , Aptidão Genética/genética , Espectrometria de Massas , Dados de Sequência Molecular
4.
Proc Natl Acad Sci U S A ; 111(25): 9271-6, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24927539

RESUMO

Bacteria use diverse mechanisms to kill, manipulate, and compete with other cells. The recently discovered type VI secretion system (T6SS) is widespread in bacterial pathogens and used to deliver virulence effector proteins into target cells. Using comparative proteomics, we identified two previously unidentified T6SS effectors that contained a conserved motif. Bioinformatic analyses revealed that this N-terminal motif, named MIX (marker for type six effectors), is found in numerous polymorphic bacterial proteins that are primarily located in the T6SS genome neighborhood. We demonstrate that several MIX-containing proteins are T6SS effectors and that they are not required for T6SS activity. Thus, we propose that MIX-containing proteins are T6SS effectors. Our findings allow for the identification of numerous uncharacterized T6SS effectors that will undoubtedly lead to the discovery of new biological mechanisms.


Assuntos
Bactérias/genética , Proteínas de Bactérias/genética , Sistemas de Secreção Bacterianos/genética , Genoma Bacteriano/fisiologia , Motivos de Aminoácidos , Bactérias/metabolismo , Bactérias/patogenicidade , Proteínas de Bactérias/metabolismo , Estudo de Associação Genômica Ampla
5.
Mol Cell Proteomics ; 13(6): 1573-84, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24696503

RESUMO

Bottom-up proteomics largely relies on tryptic peptides for protein identification and quantification. Tryptic digestion often provides limited coverage of protein sequence because of issues such as peptide length, ionization efficiency, and post-translational modification colocalization. Unfortunately, a region of interest in a protein, for example, because of proximity to an active site or the presence of important post-translational modifications, may not be covered by tryptic peptides. Detection limits, quantification accuracy, and isoform differentiation can also be improved with greater sequence coverage. Selected reaction monitoring (SRM) would also greatly benefit from being able to identify additional targetable sequences. In an attempt to improve protein sequence coverage and to target regions of proteins that do not generate useful tryptic peptides, we deployed a multiprotease strategy on the HeLa proteome. First, we used seven commercially available enzymes in single, double, and triple enzyme combinations. A total of 48 digests were performed. 5223 proteins were detected by analyzing the unfractionated cell lysate digest directly; with 42% mean sequence coverage. Additional strong-anion exchange fractionation of the most complementary digests permitted identification of over 3000 more proteins, with improved mean sequence coverage. We then constructed a web application (https://proteomics.swmed.edu/confetti) that allows the community to examine a target protein or protein isoform in order to discover the enzyme or combination of enzymes that would yield peptides spanning a certain region of interest in the sequence. Finally, we examined the use of nontryptic digests for SRM. From our strong-anion exchange fractionation data, we were able to identify three or more proteotypic SRM candidates within a single digest for 6056 genes. Surprisingly, in 25% of these cases the digest producing the most observable proteotypic peptides was neither trypsin nor Lys-C. SRM analysis of Asp-N versus tryptic peptides for eight proteins determined that Asp-N yielded higher signal in five of eight cases.


Assuntos
Fragmentos de Peptídeos/genética , Peptídeos/genética , Proteômica , Tripsina , Regulação Neoplásica da Expressão Gênica , Células HeLa , Humanos , Espectrometria de Massas , Fragmentos de Peptídeos/biossíntese , Fragmentos de Peptídeos/isolamento & purificação , Peptídeos/isolamento & purificação , Processamento de Proteína Pós-Traducional
6.
Proteomics ; 14(12): 1467-71, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24723505

RESUMO

Modern nano-HPLC systems are capable of extremely precise control of solvent gradients, allowing high-resolution separation of peptides. Most proteomics laboratories use a simple linear analytical gradient for nano-LC-MS/MS experiments, though recent evidence indicates that optimized non-linear gradients result in increased peptide and protein identifications from cell lysates. In concurrent work, we examined non-linear gradients for the analysis of samples fractionated at the peptide level, where the distribution of peptide retention times often varies by fraction. We hypothesized that greater coverage of these samples could be achieved using per-fraction optimized gradients. We demonstrate that the optimized gradients improve the distribution of peptides throughout the analysis. Using previous generation MS instrumentation, a considerable gain in peptide and protein identifications can be realized. With current MS platforms that have faster electronics and achieve shorter duty cycle, the improvement in identifications is smaller. Our gradient optimization method has been implemented in a simple graphical tool (GOAT) that is MS-vendor independent, does not require peptide ID input, and is freely available for non-commercial use at http://proteomics.swmed.edu/goat/


Assuntos
Cromatografia Líquida/métodos , Biologia Computacional , Fragmentos de Peptídeos/análise , Proteínas/análise , Proteômica/métodos , Software , Espectrometria de Massas em Tandem/métodos , Humanos
7.
Mol Cell ; 53(4): 645-54, 2014 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-24486019

RESUMO

Efficient stop codon recognition and peptidyl-tRNA hydrolysis are essential in order to terminate translational elongation and maintain protein sequence fidelity. Eukaryotic translational termination is mediated by a release factor complex that includes eukaryotic release factor 1 (eRF1) and eRF3. The N terminus of eRF1 contains highly conserved sequence motifs that couple stop codon recognition at the ribosomal A site to peptidyl-tRNA hydrolysis. We reveal that Jumonji domain-containing 4 (Jmjd4), a 2-oxoglutarate- and Fe(II)-dependent oxygenase, catalyzes carbon 4 (C4) lysyl hydroxylation of eRF1. This posttranslational modification takes place at an invariant lysine within the eRF1 NIKS motif and is required for optimal translational termination efficiency. These findings further highlight the role of 2-oxoglutarate/Fe(II) oxygenases in fundamental cellular processes and provide additional evidence that ensuring fidelity of protein translation is a major role of hydroxylation.


Assuntos
Regulação da Expressão Gênica , Histona Desmetilases/metabolismo , Oxigenases de Função Mista/química , Terminação Traducional da Cadeia Peptídica/genética , Fatores de Terminação de Peptídeos/química , Biossíntese de Proteínas , Sequência de Aminoácidos , Animais , Catálise , Linhagem Celular Tumoral , Códon de Terminação , Células HeLa , Humanos , Hidrólise , Hidroxilação , Histona Desmetilases com o Domínio Jumonji , Modelos Moleculares , Dados de Sequência Molecular , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
8.
PLoS One ; 8(10): e77423, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24204825

RESUMO

Signaling through the T cell receptor (TCR) initiates adaptive immunity and its perturbation may results in autoimmunity. The plasma membrane scaffolding protein LAT acts as a central organizer of the TCR signaling machinery to activate many functional pathways. LAT-deficient mice develop an autoimmune syndrome but the mechanism of this pathology is unknown. In this work we have compared global dynamics of TCR signaling by MS-based quantitative phosphoproteomics in LAT-sufficient and LAT-defective Jurkat T cells. Surprisingly, we found that many TCR-induced phosphorylation events persist in the absence of LAT, despite ERK and PLCγ1 phosphorylation being repressed. Most importantly, the absence of LAT resulted in augmented and persistent tyrosine phosphorylation of CD3ζ and ZAP70. This indicates that LAT signaling hub is also implicated in negative feedback signals to modulate upstream phosphorylation events. Phosphorylation kinetics data resulting from this investigation is documented in a database (phosphoTCR) accessible online. The MS data have been deposited to the ProteomeXchange with identifier PXD000341.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Complexo CD3/genética , Proteínas de Membrana/genética , Fosfoproteínas/genética , Transdução de Sinais/genética , Proteína-Tirosina Quinase ZAP-70/genética , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Complexo CD3/metabolismo , Cromatografia Líquida , Bases de Dados de Proteínas , Retroalimentação Fisiológica , Regulação da Expressão Gênica , Humanos , Células Jurkat , Espectrometria de Massas , Proteínas de Membrana/deficiência , Fosfolipase C gama/genética , Fosfolipase C gama/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Mapeamento de Interação de Proteínas , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Tirosina/metabolismo , Proteína-Tirosina Quinase ZAP-70/metabolismo
9.
Proc Natl Acad Sci U S A ; 110(47): 18826-31, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24191005

RESUMO

The Ste20 family protein kinases oxidative stress-responsive 1 (OSR1) and the STE20/SPS1-related proline-, alanine-rich kinase directly regulate the solute carrier 12 family of cation-chloride cotransporters and thereby modulate a range of processes including cell volume homeostasis, blood pressure, hearing, and kidney function. OSR1 and STE20/SPS1-related proline-, alanine-rich kinase are activated by with no lysine [K] protein kinases that phosphorylate the essential activation loop regulatory site on these kinases. We found that inhibition of phosphoinositide 3-kinase (PI3K) reduced OSR1 activation by osmotic stress. Inhibition of the PI3K target pathway, the mammalian target of rapamycin complex 2 (mTORC2), by depletion of Sin1, one of its components, decreased activation of OSR1 by sorbitol and reduced activity of the OSR1 substrate, the sodium, potassium, two chloride cotransporter, in HeLa cells. OSR1 activity was also reduced with a pharmacological inhibitor of mTOR. mTORC2 phosphorylated OSR1 on S339 in vitro, and mutation of this residue eliminated OSR1 phosphorylation by mTORC2. Thus, we identify a previously unrecognized connection of the PI3K pathway through mTORC2 to a Ste20 protein kinase and ion homeostasis.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Pressão Osmótica/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Análise de Variância , Células HeLa , Humanos , Immunoblotting , Imunoprecipitação , Alvo Mecanístico do Complexo 2 de Rapamicina , Antígenos de Histocompatibilidade Menor , Complexos Multiproteicos/metabolismo , Oligonucleotídeos/genética , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , RNA Interferente Pequeno/genética , Sorbitol , Serina-Treonina Quinases TOR/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK
10.
Cell ; 154(2): 416-29, 2013 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-23870129

RESUMO

Protein translation is an energetically demanding process that must be regulated in response to changes in nutrient availability. Herein, we report that intracellular methionine and cysteine availability directly controls the thiolation status of wobble-uridine (U34) nucleotides present on lysine, glutamine, or glutamate tRNAs to regulate cellular translational capacity and metabolic homeostasis. tRNA thiolation is important for growth under nutritionally challenging environments and required for efficient translation of genes enriched in lysine, glutamine, and glutamate codons, which are enriched in proteins important for translation and growth-specific processes. tRNA thiolation is downregulated during sulfur starvation in order to decrease sulfur consumption and growth, and its absence leads to a compensatory increase in enzymes involved in methionine, cysteine, and lysine biosynthesis. Thus, tRNA thiolation enables cells to modulate translational capacity according to the availability of sulfur amino acids, establishing a functional significance for this conserved tRNA nucleotide modification in cell growth control.


Assuntos
Aminoácidos Sulfúricos/metabolismo , Biossíntese de Proteínas , RNA de Transferência/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Uridina/metabolismo , Regulação para Baixo , RNA de Transferência/química , Saccharomyces cerevisiae/crescimento & desenvolvimento
11.
Nat Methods ; 10(4): 343-6, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23474466

RESUMO

Here we demonstrate quantitation of stimuli-induced proteome dynamics in primary cells by combining the power of bio-orthogonal noncanonical amino acid tagging (BONCAT) and stable-isotope labeling of amino acids in cell culture (SILAC). In conjunction with nanoscale liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS), quantitative noncanonical amino acid tagging (QuaNCAT) allowed us to monitor the early expression changes of >600 proteins in primary resting T cells subjected to activation stimuli.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteômica/métodos , Aminoácidos , Linfócitos T CD4-Positivos/efeitos dos fármacos , Ionóforos de Cálcio/farmacologia , Carcinógenos/farmacologia , Cromatografia Líquida/métodos , Humanos , Ionomicina/farmacologia , Marcação por Isótopo , Ésteres de Forbol/farmacologia , Sensibilidade e Especificidade , Espectrometria de Massas em Tandem/métodos
12.
PLoS Pathog ; 8(11): e1002993, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23144613

RESUMO

Protein phosphorylation is a common post-translational modification in eukaryotic cells and has a wide range of functional effects. Here, we used mass spectrometry to search for phosphorylated residues in all the proteins of influenza A and B viruses--to the best of our knowledge, the first time such a comprehensive approach has been applied to a virus. We identified 36 novel phosphorylation sites, as well as confirming 3 previously-identified sites. N-terminal processing and ubiquitination of viral proteins was also detected. Phosphorylation was detected in the polymerase proteins (PB2, PB1 and PA), glycoproteins (HA and NA), nucleoprotein (NP), matrix protein (M1), ion channel (M2), non-structural protein (NS1) and nuclear export protein (NEP). Many of the phosphorylation sites detected were conserved between influenza virus genera, indicating the fundamental importance of phosphorylation for all influenza viruses. Their structural context indicates roles for phosphorylation in regulating viral entry and exit (HA and NA); nuclear localisation (PB2, M1, NP, NS1 and, through NP and NEP, of the viral RNA genome); and protein multimerisation (NS1 dimers, M2 tetramers and NP oligomers). Using reverse genetics we show that for NP of influenza A viruses phosphorylation sites in the N-terminal NLS are important for viral growth, whereas mutating sites in the C-terminus has little or no effect. Mutating phosphorylation sites in the oligomerisation domains of NP inhibits viral growth and in some cases transcription and replication of the viral RNA genome. However, constitutive phosphorylation of these sites is not optimal. Taken together, the conservation, structural context and functional significance of phosphorylation sites implies a key role for phosphorylation in influenza biology. By identifying phosphorylation sites throughout the proteomes of influenza A and B viruses we provide a framework for further study of phosphorylation events in the viral life cycle and suggest a range of potential antiviral targets.


Assuntos
Vírus da Influenza A/metabolismo , Vírus da Influenza B/metabolismo , Infecções por Orthomyxoviridae/metabolismo , Proteoma/metabolismo , Proteínas Virais/metabolismo , Animais , Linhagem Celular , Cães , Vírus da Influenza A/química , Vírus da Influenza B/química , Fosforilação , Proteoma/química , Proteínas Virais/química
13.
Nat Chem Biol ; 8(12): 960-962, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23103944

RESUMO

The finding that oxygenase-catalyzed protein hydroxylation regulates animal transcription raises questions as to whether the translation machinery and prokaryotic proteins are analogously modified. Escherichia coli ycfD is a growth-regulating 2-oxoglutarate oxygenase catalyzing arginyl hydroxylation of the ribosomal protein Rpl16. Human ycfD homologs, Myc-induced nuclear antigen (MINA53) and NO66, are also linked to growth and catalyze histidyl hydroxylation of Rpl27a and Rpl8, respectively. This work reveals new therapeutic possibilities via oxygenase inhibition and by targeting modified over unmodified ribosomes.


Assuntos
Proteínas de Escherichia coli/metabolismo , Oxigenases de Função Mista/metabolismo , Oxigenases/metabolismo , Células Procarióticas/metabolismo , Ribossomos/metabolismo , Animais , Arginina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Dioxigenases , Inibidores Enzimáticos/farmacologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/antagonistas & inibidores , Histidina/metabolismo , Histona Desmetilases , Humanos , Hidroxilação , Espectroscopia de Ressonância Magnética , Oxigenases de Função Mista/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Oxigenases/antagonistas & inibidores , Proteínas Ribossômicas/metabolismo
14.
J Proteome Res ; 11(12): 6282-90, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23088505

RESUMO

We have extended the functionality of the Central Proteomics Facilities Pipeline (CPFP) to allow use of remote cloud and high performance computing (HPC) resources for shotgun proteomics data processing. CPFP has been modified to include modular local and remote scheduling for data processing jobs. The pipeline can now be run on a single PC or server, a local cluster, a remote HPC cluster, and/or the Amazon Web Services (AWS) cloud. We provide public images that allow easy deployment of CPFP in its entirety in the AWS cloud. This significantly reduces the effort necessary to use the software, and allows proteomics laboratories to pay for compute time ad hoc, rather than obtaining and maintaining expensive local server clusters. Alternatively the Amazon cloud can be used to increase the throughput of a local installation of CPFP as necessary. We demonstrate that cloud CPFP allows users to process data at higher speed than local installations but with similar cost and lower staff requirements. In addition to the computational improvements, the web interface to CPFP is simplified, and other functionalities are enhanced. The software is under active development at two leading institutions and continues to be released under an open-source license at http://cpfp.sourceforge.net.


Assuntos
Biologia Computacional/métodos , Proteômica/métodos , Software , Linhagem Celular , Biologia Computacional/economia , Bases de Dados de Proteínas , Processamento Eletrônico de Dados/métodos , Humanos , Internet , Proteômica/economia , Reprodutibilidade dos Testes , Ferramenta de Busca , Fatores de Tempo
15.
Mol Cell Proteomics ; 11(11): 1489-99, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22865923

RESUMO

The lack of methods for proteome-scale detection of arginine methylation restricts our knowledge of its relevance in physiological and pathological processes. Here we show that most tryptic peptides containing methylated arginine(s) are highly basic and hydrophilic. Consequently, they could be considerably enriched from total cell extracts by simple protocols using either one of strong cation exchange chromatography, isoelectric focusing, or hydrophilic interaction liquid chromatography, the latter being by far the most effective of all. These methods, coupled with heavy methyl-stable isotope labeling by amino acids in cell culture and mass spectrometry, enabled in T cells the identification of 249 arginine methylation sites in 131 proteins, including 190 new sites and 93 proteins not previously known to be arginine methylated. By extending considerably the number of known arginine methylation sites, our data reveal a novel proline-rich consensus motif and identify for the first time arginine methylation in proteins involved in cytoskeleton rearrangement at the immunological synapse and in endosomal trafficking.


Assuntos
Arginina/metabolismo , Proteínas/metabolismo , Proteômica/métodos , Sequência de Aminoácidos , Linfócitos T CD4-Positivos/metabolismo , Compartimento Celular , Cromatografia por Troca Iônica , Cromatografia Líquida , Biologia Computacional , Humanos , Interações Hidrofóbicas e Hidrofílicas , Focalização Isoelétrica , Marcação por Isótopo , Células Jurkat , Metilação , Modelos Biológicos , Dados de Sequência Molecular , Peptídeos/metabolismo , Proteínas/química
16.
EMBO Rep ; 13(3): 251-7, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22310300

RESUMO

Hypoxic and oxidant stresses can coexist in biological systems, and oxidant stress has been proposed to activate hypoxia pathways through the inactivation of the 'oxygen-sensing' hypoxia-inducible factor (HIF) prolyl and asparaginyl hydroxylases. Here, we show that despite reduced sensitivity to cellular hypoxia, the HIF asparaginyl hydroxylase--known as FIH, factor inhibiting HIF--is strikingly more sensitive to peroxide than the HIF prolyl hydroxylases. These contrasting sensitivities indicate that oxidant stress is unlikely to signal hypoxia directly to the HIF system, but that hypoxia and oxidant stress can interact functionally as distinct regulators of HIF transcriptional output.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Oxigenases de Função Mista/metabolismo , Peróxidos/metabolismo , Proteínas Repressoras/metabolismo , Hipóxia Celular/genética , Linhagem Celular , Cisteína/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hidroxilação/efeitos dos fármacos , Oxigenases de Função Mista/antagonistas & inibidores , Peróxidos/farmacologia , Proteínas Repressoras/antagonistas & inibidores , Transcrição Gênica
17.
Mol Cell Proteomics ; 11(2): M111.013904, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21997733

RESUMO

Ankylosing Spondylitis (AS) is a common inflammatory rheumatic disease with a predilection for the axial skeleton, affecting 0.2% of the population. Current diagnostic criteria rely on a composite of clinical and radiological changes, with a mean time to diagnosis of 5 to 10 years. In this study we employed nano liquid-chromatography mass spectrometry analysis to detect and quantify proteins and small compounds including endogenous peptides and metabolites in serum from 18 AS patients and nine healthy individuals. We identified a total of 316 proteins in serum, of which 22 showed significant up- or down-regulation (p < 0.05) in AS patients. Receiver operating characteristic analysis of combined levels of serum amyloid P component and inter-α-trypsin inhibitor heavy chain 1 revealed high diagnostic value for Ankylosing Spondylitis (area under the curve = 0.98). We also depleted individual sera of proteins to analyze endogenous peptides and metabolic compounds. We detected more than 7000 molecular features in patients and healthy individuals. Quantitative MS analysis revealed compound profiles that correlate with the clinical assessment of disease activity. One molecular feature identified as a Vitamin D3 metabolite-(23S,25R)-25-hydroxyvitamin D3 26,23-peroxylactone-was down-regulated in AS. The ratio of this vitamin D metabolite versus vitamin D binding protein serum levels was also altered in AS as compared with controls. These changes may contribute to pathological skeletal changes in AS. Our study is the first example of an integration of proteomic and metabolomic techniques to find new biomarker candidates for the diagnosis of Ankylosing Spondylitis.


Assuntos
Biomarcadores/análise , Proteínas Sanguíneas/metabolismo , Metabolômica , Proteômica , Espondilite Anquilosante/diagnóstico , Adolescente , Adulto , Idoso , Estudos de Casos e Controles , Cromatografia Líquida , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espondilite Anquilosante/sangue
18.
J Biol Chem ; 286(39): 33784-94, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21808058

RESUMO

The asparaginyl hydroxylase, factor-inhibiting hypoxia-inducible factor (HIF), is central to the oxygen-sensing pathway that controls the activity of HIF. Factor-inhibiting HIF (FIH) also catalyzes the hydroxylation of a large set of proteins that share a structural motif termed the ankyrin repeat domain (ARD). In vitro studies have defined kinetic properties of FIH with respect to different substrates and have suggested FIH binds more tightly to certain ARD proteins than HIF and that ARD hydroxylation may have a lower K(m) value for oxygen than HIF hydroxylation. However, regulation of asparaginyl hydroxylation on ARD substrates has not been systematically studied in cells. To address these questions, we employed isotopic labeling and mass spectrometry to monitor the accrual, inhibition, and decay of hydroxylation under defined conditions. Under the conditions examined, hydroxylation was not reversed but increased as the protein aged. The extent of hydroxylation on ARD proteins was increased by addition of ascorbate, whereas iron and 2-oxoglutarate supplementation had no significant effect. Despite preferential binding of FIH to ARD substrates in vitro, when expressed as fusion proteins in cells, hydroxylation was found to be more complete on HIF polypeptides compared with sites within the ARD. Furthermore, comparative studies of hydroxylation in graded hypoxia revealed ARD hydroxylation was suppressed in a site-specific manner and was as sensitive as HIF to hypoxic inhibition. These findings suggest that asparaginyl hydroxylation of HIF-1 and ARD proteins is regulated by oxygen over a similar range, potentially tuning the HIF transcriptional response through competition between the two types of substrate.


Assuntos
Fator 1 Induzível por Hipóxia/metabolismo , Oxigenases de Função Mista/metabolismo , Oxigênio/metabolismo , Proteínas Repressoras/metabolismo , Transcrição Gênica , Animais , Repetição de Anquirina , Hipóxia Celular , Células HEK293 , Humanos , Hidroxilação , Fator 1 Induzível por Hipóxia/genética , Espectrometria de Massas , Camundongos , Oxigenases de Função Mista/genética , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Repressoras/genética
19.
Proteomics ; 11(14): 2790-7, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21656681

RESUMO

Normalized spectral index quantification was recently presented as an accurate method of label-free quantitation, which improved spectral counting by incorporating the intensities of peptide MS/MS fragment ions into the calculation of protein abundance. We present SINQ, a tool implementing this method within the framework of existing analysis software, our freely available central proteomics facilities pipeline (CPFP). We demonstrate, using data sets of protein standards acquired on a variety of mass spectrometers, that SINQ can rapidly provide useful estimates of the absolute quantity of proteins present in a medium-complexity sample. In addition, relative quantitation of standard proteins spiked into a complex lysate background and run without pre-fractionation produces accurate results at amounts above 1 fmol on column. We compare quantitation performance to various precursor intensity- and identification-based methods, including the normalized spectral abundance factor (NSAF), exponentially modified protein abundance index (emPAI), MaxQuant, and Progenesis LC-MS. We anticipate that the SINQ tool will be a useful asset for core facilities and individual laboratories that wish to produce quantitative MS data, but lack the necessary manpower to routinely support more complicated software workflows. SINQ is freely available to obtain and use as part of the central proteomics facilities pipeline, which is released under an open-source license.


Assuntos
Proteínas/análise , Proteoma/análise , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Humanos , Proteômica/normas
20.
J Immunol ; 187(2): 748-59, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21666058

RESUMO

Upon activation, CD4(+) T cells release cytokines, chemokines, and other soluble factors that influence the kinetics of HIV-1 replication in macrophages (M). In this article, we show that activation of human primary T cells suppresses the early stages of HIV-1 replication in human primary Mφ by downregulating the main cellular receptor for the virus CD4. The secreted factors responsible for this effect have a molecular mass greater than conventional cytokines, are independent of Th1 or Th2 polarization, and are not IFN-γ, IL-16, RANTES, or macrophage inhibitory factor, as revealed by cytokine array analysis and neutralization assays. CD4 downregulation is entirely posttranslational and involves serine phosphorylation of CD4 and its targeting to an intracellular compartment destined for acidification and degradation. CD4 downregulation is dependent on the activities of both protein kinase C and NF-κB as well as the proteasomes. Using high-resolution liquid chromatography-tandem mass spectrometry analysis in conjugation with label-free protein quantitation software, we found that proteins that promote Mφ adherence and spreading, such as attractin, fibronectin, and galectin-3-binding protein, were significantly overrepresented in the activated T cell supernatant fractions. These results reveal the existence of previously unreported anti-HIV-1 proteins, released by activated T cells that downregulate CD4 expression, and are of fundamental importance to understand the kinetics of HIV infection in vivo.


Assuntos
Antígenos CD4/metabolismo , Citocinas/fisiologia , Regulação para Baixo/imunologia , Infecções por HIV/imunologia , Macrófagos/imunologia , NF-kappa B/fisiologia , Proteína Quinase C/fisiologia , Linfócitos T/imunologia , Adulto , Antígenos CD4/biossíntese , Diferenciação Celular/imunologia , Células Cultivadas , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/imunologia , Humanos , Ativação Linfocitária/imunologia , Macrófagos/metabolismo , Macrófagos/virologia , Solubilidade , Linfócitos T/metabolismo , Linfócitos T/virologia , Replicação Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA