Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37175936

RESUMO

The effects of the administration of mesenchymal stromal cells (MSC) may vary according to the source. We hypothesized that MSC-derived extracellular vesicles (EVs) obtained from bone marrow (BM), adipose (AD), or lung (L) tissues may also lead to different effects in sepsis. We profiled the proteome from EVs as a first step toward understanding their mechanisms of action. Polymicrobial sepsis was induced in C57BL/6 mice by cecal ligation and puncture (SEPSIS) and SHAM (control) animals only underwent laparotomy. Twenty-four hours after surgery, animals in the SEPSIS group were randomized to receive saline or 3 × 106 MSC-derived EVs from BM, AD, or L. The diffuse alveolar damage was decreased with EVs from all three sources. In kidneys, BM-, AD-, and L-EVs reduced edema and expression of interleukin-18. Kidney injury molecule-1 expression decreased only in BM- and L-EVs groups. In the liver, only BM-EVs reduced congestion and cell infiltration. The size and number of EVs from different sources were not different, but the proteome of the EVs differed. BM-EVs were enriched for anti-inflammatory proteins compared with AD-EVs and L-EVs. In conclusion, BM-EVs were associated with less organ damage compared with the other sources of EVs, which may be related to differences detected in their proteome.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Sepse , Animais , Camundongos , Vesículas Extracelulares/metabolismo , Pulmão , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , Proteoma/metabolismo , Sepse/metabolismo
2.
Front Cell Infect Microbiol ; 12: 926352, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35937696

RESUMO

Background: Extracellular vesicles (EVs) are a valuable source of biomarkers and display the pathophysiological status of various diseases. In COVID-19, EVs have been explored in several studies for their ability to reflect molecular changes caused by SARS-CoV-2. Here we provide insights into the roles of EVs in pathological processes associated with the progression and severity of COVID-19. Methods: In this study, we used a label-free shotgun proteomic approach to identify and quantify alterations in EV protein abundance in severe COVID-19 patients. We isolated plasma extracellular vesicles from healthy donors and patients with severe COVID-19 by size exclusion chromatography (SEC). Then, flow cytometry was performed to assess the origin of EVs and to investigate the presence of circulating procoagulant EVs in COVID-19 patients. A total protein extraction was performed, and samples were analyzed by nLC-MS/MS in a Q-Exactive HF-X. Finally, computational analysis was applied to signify biological processes related to disease pathogenesis. Results: We report significant changes in the proteome of EVs from patients with severe COVID-19. Flow cytometry experiments indicated an increase in total circulating EVs and with tissue factor (TF) dependent procoagulant activity. Differentially expressed proteins in the disease groups were associated with complement and coagulation cascades, platelet degranulation, and acute inflammatory response. Conclusions: The proteomic data reinforce the changes in the proteome of extracellular vesicles from patients infected with SARS-CoV-2 and suggest a role for EVs in severe COVID-19.


Assuntos
COVID-19 , Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Humanos , Proteoma/metabolismo , Proteômica/métodos , SARS-CoV-2 , Espectrometria de Massas em Tandem
3.
Cell Death Discov ; 8(1): 324, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842415

RESUMO

Coronavirus disease 2019 (COVID-19) has affected over 400 million people worldwide, leading to 6 million deaths. Among the complex symptomatology of COVID-19, hypercoagulation and thrombosis have been described to directly contribute to lethality, pointing out platelets as an important SARS-CoV-2 target. In this work, we explored the platelet proteome of COVID-19 patients through a label-free shotgun proteomics approach to identify platelet responses to infection, as well as validation experiments in a larger patient cohort. Exclusively detected proteins (EPs) and differentially expressed proteins (DEPs) were identified in the proteomic dataset and thus classified into biological processes to map pathways correlated with pathogenesis. Significant changes in the expression of proteins related to platelet activation, cell death, and antiviral response through interferon type-I were found in all patients. Since the outcome of COVID-19 varies highly among individuals, we also performed a cross-comparison of proteins found in survivors and nonsurvivors. Proteins belonging to the translation pathway were strongly highlighted in the nonsurvivor group. Moreover, the SARS-CoV-2 genome was fully sequenced in platelets from five patients, indicating viral internalization and preprocessing, with CD147 as a potential entry route. In summary, platelets play a significant role in COVID-19 pathogenesis via platelet activation, antiviral response, and disease severity.

4.
Microbiome ; 10(1): 65, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459226

RESUMO

BACKGROUND: Critically ill 2019 coronavirus disease (COVID-19) patients under invasive mechanical ventilation (IMV) are 10 to 40 times more likely to die than the general population. Although progression from mild to severe COVID-19 has been associated with hypoxia, uncontrolled inflammation, and coagulopathy, the mechanisms involved in the progression to severity are poorly understood. METHODS: The virome of tracheal aspirates (TA) from 25 COVID-19 patients under IMV was assessed through unbiased RNA sequencing (RNA-seq), and correlation analyses were conducted using available clinical data. Unbiased sequences from nasopharyngeal swabs (NS) from mild cases and TA from non-COVID patients were included in our study for further comparisons. RESULTS: We found higher levels and differential expression of human endogenous retrovirus K (HERV-K) genes in TA from critically ill and deceased patients when comparing nasopharyngeal swabs from mild cases to TA from non-COVID patients. In critically ill patients, higher HERV-K levels were associated with early mortality (within 14 days of diagnosis) in the intensive care unit. Increased HERV-K expression in deceased patients was associated with IL-17-related inflammation, monocyte activation, and an increased consumption of clotting/fibrinolysis factors. Moreover, increased HERV-K expression was detected in human primary monocytes from healthy donors after experimental SARS-CoV-2 infection in vitro. CONCLUSION: Our data implicate the levels of HERV-K transcripts in the physiopathology of COVID-19 in the respiratory tract of patients under invasive mechanical ventilation. Video abstract.


Assuntos
COVID-19 , Retrovirus Endógenos , Estado Terminal , Retrovirus Endógenos/genética , Humanos , Inflamação , Sistema Respiratório , SARS-CoV-2
5.
Nat Protoc ; 17(7): 1553-1578, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35411045

RESUMO

Shotgun proteomics aims to identify and quantify the thousands of proteins in complex mixtures such as cell and tissue lysates and biological fluids. This approach uses liquid chromatography coupled with tandem mass spectrometry and typically generates hundreds of thousands of mass spectra that require specialized computational environments for data analysis. PatternLab for proteomics is a unified computational environment for analyzing shotgun proteomic data. PatternLab V (PLV) is the most comprehensive and crucial update so far, the result of intensive interaction with the proteomics community over several years. All PLV modules have been optimized and its graphical user interface has been completely updated for improved user experience. Major improvements were made to all aspects of the software, ranging from boosting the number of protein identifications to faster extraction of ion chromatograms. PLV provides modules for preparing sequence databases, protein identification, statistical filtering and in-depth result browsing for both labeled and label-free quantitation. The PepExplorer module can even pinpoint de novo sequenced peptides not already present in the database. PLV is of broad applicability and therefore suitable for challenging experimental setups, such as time-course experiments and data handling from unsequenced organisms. PLV interfaces with widely adopted software and community initiatives, e.g., Comet, Skyline, PEAKS and PRIDE. It is freely available at http://www.patternlabforproteomics.org .


Assuntos
Proteômica , Software , Bases de Dados de Proteínas , Proteínas/química , Proteômica/métodos , Espectrometria de Massas em Tandem
6.
Int J Mol Sci ; 22(16)2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34445741

RESUMO

(1) Background: coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been linked to hematological dysfunctions, but there are little experimental data that explain this. Spike (S) and Nucleoprotein (N) proteins have been putatively associated with these dysfunctions. In this work, we analyzed the recruitment of hemoglobin (Hb) and other metabolites (hemin and protoporphyrin IX-PpIX) by SARS-Cov2 proteins using different approaches. (2) Methods: shotgun proteomics (LC-MS/MS) after affinity column adsorption identified hemin-binding SARS-CoV-2 proteins. The parallel synthesis of the peptides technique was used to study the interaction of the receptor bind domain (RBD) and N-terminal domain (NTD) of the S protein with Hb and in silico analysis to identify the binding motifs of the N protein. The plaque assay was used to investigate the inhibitory effect of Hb and the metabolites hemin and PpIX on virus adsorption and replication in Vero cells. (3) Results: the proteomic analysis by LC-MS/MS identified the S, N, M, Nsp3, and Nsp7 as putative hemin-binding proteins. Six short sequences in the RBD and 11 in the NTD of the spike were identified by microarray of peptides to interact with Hb and tree motifs in the N protein by in silico analysis to bind with heme. An inhibitory effect in vitro of Hb, hemin, and PpIX at different levels was observed. Strikingly, free Hb at 1mM suppressed viral replication (99%), and its interaction with SARS-CoV-2 was localized into the RBD region of the spike protein. (4) Conclusions: in this study, we identified that (at least) five proteins (S, N, M, Nsp3, and Nsp7) of SARS-CoV-2 recruit Hb/metabolites. The motifs of the RDB of SARS-CoV-2 spike, which binds Hb, and the sites of the heme bind-N protein were disclosed. In addition, these compounds and PpIX block the virus's adsorption and replication. Furthermore, we also identified heme-binding motifs and interaction with hemin in N protein and other structural (S and M) and non-structural (Nsp3 and Nsp7) proteins.


Assuntos
COVID-19/etiologia , Hemoglobinas/metabolismo , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/metabolismo , Proteínas Estruturais Virais/metabolismo , COVID-19/sangue , Hemina/metabolismo , Hemoglobinas/ultraestrutura , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Domínios Proteicos , Proteômica , Protoporfirinas/metabolismo , SARS-CoV-2/patogenicidade , Proteínas não Estruturais Virais/ultraestrutura , Proteínas Estruturais Virais/ultraestrutura , Ligação Viral , Replicação Viral
7.
Protist ; 170(6): 125698, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31760169

RESUMO

Strigomonas culicis is a kinetoplastid parasite of insects that maintains a mutualistic association with an intracellular symbiotic bacterium, which is highly integrated into the protist metabolism: it furnishes essential compounds and divides in synchrony with the eukaryotic nucleus. The protist, conversely, can be cured of the endosymbiont, producing an aposymbiotic cell line, which presents a diminished ability to colonize the insect host. This obligatory association can represent an intermediate step of the evolution towards the formation of an organelle, therefore representing an interesting model to understand the symbiogenesis theory. Here, we used shotgun proteomics to compare the S. culicis endosymbiont-containing and aposymbiotic strains, revealing a total of 11,305 peptides, and up to 2,213 proteins (2,029 and 1,452 for wild type and aposymbiotic, respectively). Gene ontology associated to comparative analysis between both strains revealed that the biological processes most affected by the elimination of the symbiont were the amino acid synthesis, as well as protein synthesis and folding. This large-scale comparison of the protein expression in S. culicis marks a step forward in the comprehension of the role of endosymbiotic bacteria in monoxenous trypanosomatid biology, particularly because trypanosomatids expression is mostly post-transcriptionally regulated.


Assuntos
Fenômenos Fisiológicos Bacterianos , Proteoma/genética , Simbiose/fisiologia , Trypanosomatina/microbiologia , Trypanosomatina/genética
8.
Sci Transl Med ; 9(409)2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28954927

RESUMO

The recent Zika virus (ZIKV) outbreak demonstrates that cost-effective clinical diagnostics are urgently needed to detect and distinguish viral infections to improve patient care. Unlike dengue virus (DENV), ZIKV infections during pregnancy correlate with severe birth defects, including microcephaly and neurological disorders. Because ZIKV and DENV are related flaviviruses, their homologous proteins and nucleic acids can cause cross-reactions and false-positive results in molecular, antigenic, and serologic diagnostics. We report the characterization of monoclonal antibody pairs that have been translated into rapid immunochromatography tests to specifically detect the viral nonstructural 1 (NS1) protein antigen and distinguish the four DENV serotypes (DENV1-4) and ZIKV without cross-reaction. To complement visual test analysis and remove user subjectivity in reading test results, we used image processing and data analysis for data capture and test result quantification. Using a 30-µl serum sample, the sensitivity and specificity values of the DENV1-4 tests and the pan-DENV test, which detects all four dengue serotypes, ranged from 0.76 to 1.00. Sensitivity/specificity for the ZIKV rapid test was 0.81/0.86, respectively, using a 150-µl serum input. Serum ZIKV NS1 protein concentrations were about 10-fold lower than corresponding DENV NS1 concentrations in infected patients; moreover, ZIKV NS1 protein was not detected in polymerase chain reaction-positive patient urine samples. Our rapid immunochromatography approach and reagents have immediate application in differential clinical diagnosis of acute ZIKV and DENV cases, and the platform can be applied toward developing rapid antigen diagnostics for emerging viruses.


Assuntos
Antígenos Virais/sangue , Vírus da Dengue/imunologia , Sorogrupo , Zika virus/imunologia , Sequência de Aminoácidos , Anticorpos Monoclonais/imunologia , Antígenos Virais/isolamento & purificação , Cromatografia de Afinidade , Mapeamento de Epitopos , Humanos , Curva ROC , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Alinhamento de Sequência
9.
J Proteomics ; 151: 204-213, 2017 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-27216643

RESUMO

DM64 is a glycosylated protein with antivenom activity isolated from the serum of the opossum Didelphis aurita. It binds non-covalently to myotoxins I (Asp49) and II (Lys49) from Bothrops asper venom and inhibits their myotoxic effect. In this study, an affinity column with immobilized DM64 as bait was used to fish potential target toxins. All ten isolated myotoxins tested were able to effectively bind to the DM64 column. To better access the specificity of the inhibitor, crude venoms from Bothrops (8 species), Crotalus (2 species) and Naja naja atra were submitted to the affinity purification. Venom fractions bound and nonbound to the DM64 column were analyzed by two-dimensional gel electrophoresis and MALDI-TOF/TOF MS. Although venom fractions bound to the column were mainly composed of basic PLA2, a few spots corresponding to acidic PLA2 were also observed. Some unexpected protein spots were also identified: C-type lectins and CRISP may represent putative new targets for DM64, whereas the presence of serine peptidases in the venom bound fraction is likely a consequence of nonspecific binding to the column matrix. The present results contribute to better delineate the inhibitory potential of DM64, providing a framework for the development of more specific antivenom therapies. BIOLOGICAL SIGNIFICANCE: Local tissue damage induced by myotoxic PLA2 remains a serious consequence of snake envenomation, since it is only partially neutralized by traditional antivenom serotherapy. Myotoxin inhibition by highly specific molecules offers great promise in the treatment of snakebites, a health problem largely neglected by governments and pharmaceutical industries. Bioactive compounds such as DM64 can represent a valuable source of scaffolds for drug development in this area. The present study has systematically profiled the binding specificity of DM64 toward a variety of snake venom toxin classes and therefore can lead to a better understanding of the structure-function relationship of this important antivenom protein.


Assuntos
Proteínas Sanguíneas/metabolismo , Venenos de Crotalídeos/antagonistas & inibidores , Animais , Proteínas Sanguíneas/uso terapêutico , Cromatografia de Afinidade , Eletroforese em Gel Bidimensional , Fosfolipases A/análise , Fosfolipases A/antagonistas & inibidores , Ligação Proteica , Proteômica/métodos , Especificidade da Espécie , Espectrometria de Massas em Tandem , Toxinas Biológicas/análise , Toxinas Biológicas/antagonistas & inibidores
10.
J Proteomics ; 151: 106-113, 2017 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-27427332

RESUMO

Secretome analysis can be described as a subset of proteomics studies consisting in the analysis of the molecules secreted by cells or tissues. Dengue virus (DENV) infection can lead to a broad spectrum of clinical manifestations, with the severe forms of the disease characterized by hemostasis abnormalities and liver injury. The hepatocytes are a relevant site of viral replication and a major source of plasma proteins. Until now, we had limited information on the small molecules secreted by hepatic cells after infection by DENV. In the present study, we analysed a fraction of the secretome of mock- and DENV-infected hepatic cells (HepG2 cells) containing molecules with <10kDa, using different proteomic approaches. We identified 175 proteins, with 57 detected only in the samples from mock-infected cells, 59 only in samples from DENV-infected cells, and 59 in both conditions. Most of the peptides identified were derived from proteins larger than 10kDa, suggesting a proteolytic processing of the secreted molecules. Using in silico analysis, we predicted consistent differences between the proteolytic processing occurring in mock and DENV-infected samples, raising, for the first time, the hypothesis that differential proteolysis of secreted molecules would be involved in the pathogenesis of dengue. BIOLOGICAL SIGNIFICANCE: Since the liver, one of the targets of DENV infection, is responsible for producing molecules involved in distinct biological processes, the identification of proteins and peptides secreted by hepatocytes after infection would help to a better understanding of the physiopathology of dengue. Proteomic analyses of molecules with <10kDa secreted by HepG2 cells after infection with DENV revealed differential proteolytic processing as an effect of DENV infection.


Assuntos
Vírus da Dengue , Fígado/metabolismo , Proteólise , Proteômica/métodos , Dengue/metabolismo , Células Hep G2 , Hepatócitos/química , Hepatócitos/virologia , Humanos , Fígado/virologia
11.
Data Brief ; 10: 248-263, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27995162

RESUMO

The data supplied in this article are related to the research article entitled "The effect of the dengue non-structural 1 protein expression over the HepG2 cell proteins in a proteomic approach" (K. Rabelo, M.R. Trugillo, S.M. Costa, B.A. Pereira, O.C. Moreira, A.T. Ferreira et al., 2016) [1]. The present article provides the inventory of peptides and proteins mapped in a hepatocyte cell line (HepG2) by mass spectrometry in the presence of the non-structural protein 1 (NS1) of Dengue 2 virus (DENV2). Cells were transfected with pcENS1 plasmid, which encodes the DENV2 NS1 protein, or the controls pcDNA3 (negative control) or pMAXGFP, encoding the green fluorescent protein (GFP), a protein unrelated to dengue. Differentially abundant protein lists were obtained by comparing cells transfected with pcENS1 and controls.

12.
J Proteomics ; 152: 339-354, 2017 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-27826075

RESUMO

Dengue is an important mosquito borne viral disease in the world. Dengue virus (DENV) encodes a polyprotein, which is cleaved in ten proteins, including the non-structural protein 1 (NS1). In this work, we analyzed the effect of NS1 expression in one hepatic cell line, HepG2, through a shotgun proteomic approach. Cells were transfected with pcENS1 plasmid, which encodes the DENV2 NS1 protein, or the controls pcDNA3 (negative control) and pMAXGFP (GFP, a protein unrelated to dengue). Expression of NS1 was detected by immunofluorescence, western blot and flow cytometry. We identified 14,138 peptides that mapped to 4,756 proteins in all analyzed conditions. We found 41 and 81 differentially abundant proteins when compared to cells transfected with plasmids pcDNA3 and pMAXGFP, respectively. Besides, 107 proteins were detected only in the presence of NS1. We identified clusters of proteins involved mainly in mRNA process and viral RNA replication. Down regulation expression of one protein (MARCKS), identified by the proteomic analysis, was also confirmed by real time PCR in HepG2 cells infected with DENV2. Identification of proteins modulated by the presence of NS1 may improve our understanding of its role in virus infection and pathogenesis, contributing to development of new therapies and vaccines. BIOLOGICAL SIGNIFICANCE: Dengue is an important viral disease, with epidemics in tropical and subtropical regions of the world. The disease is complex, with different manifestations, in which the liver is normally affected. The NS1 is found in infected cells associated with plasma membrane and secreted into the circulation as a soluble multimer. This protein is essential for virus viability, although its function is not elucidated. Some reports indicate that the NS1 can be used as a protective antigen for the development of a dengue vaccine, while others suggest its involvement in viral pathogenesis. In this work, we report an in-depth comprehensive proteomic profiling resulting from the presence of NS1 in HepG2 cells. These results can contribute to a better understanding of the NS1 role during infection.


Assuntos
Proteômica/métodos , Proteínas não Estruturais Virais/fisiologia , Análise por Conglomerados , Vírus da Dengue/química , Vírus da Dengue/fisiologia , Células Hep G2/virologia , Interações Hospedeiro-Patógeno , Humanos , Fígado/virologia , RNA Mensageiro/análise , RNA Viral/análise , Transfecção , Proteínas não Estruturais Virais/análise , Proteínas não Estruturais Virais/genética , Proteínas Virais/análise , Proteínas Virais/fisiologia
13.
Curr Top Med Chem ; 14(3): 450-61, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24304315

RESUMO

Hyperglycemia induces systemic vascular endothelial dysfunction and renal damage through the overproduction of reactive oxygen species (ROS). Regular aerobic exercise decreases the incidence of ROS-associated diseases and is involved in protection against systemic and renal vascular alterations. To investigate the impact of exercise training on renal protein expression in hyperglycemic conditions, we performed gel-based proteomic analyses of the rabbit kidney cortex from sedentary and exercised rabbits after exposure to normal or high glucose concentrations. Abundance of proteins in the renal cortex was determined by two-dimensional polyacrylamide gel electrophoresis followed by protein identification with mass spectrometry, using peptide mass and fragment fingerprintings. We identified the differential abundance of twenty seven proteins in exercise trained animals among the total of 324 spots, from which five proteins are related to the down-regulation of cellular oxidative stress (albumin, protein disulfide isomerase, heat shock protein 60-like chaperonin, DJ-1 and ubiquinol-cytochrome-c reductase), and three proteins are involved in energy metabolism (shortchain acyl-coenzyme A dehydrogenase, malate dehydrogenase and L-arginine-glycine amidinotransferase). We concluded that exercise training induces an increase in the abundance of five antioxidant proteins in the renal cortex, which could explain the well-known increase in endothelial-dependent vasodilation that results from exercise and the consequential protective effect against increased oxidative stress of the hyperglycemic milieu. Moreover, this protective effect could be important in the prevention of kidney vascular damage associated with diabetes pathophysiology.


Assuntos
Glicemia/metabolismo , Hiperglicemia/metabolismo , Córtex Renal/metabolismo , Condicionamento Físico Animal/fisiologia , Proteoma/metabolismo , Animais , Feminino , Córtex Renal/cirurgia , Masculino , Coelhos , Espécies Reativas de Oxigênio/metabolismo
14.
J Proteome Res ; 11(2): 1152-62, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22168127

RESUMO

Rear-fanged and aglyphous snakes are usually considered not dangerous to humans because of their limited capacity of injecting venom. Therefore, only a few studies have been dedicated to characterizing the venom of the largest parcel of snake fauna. Here, we investigated the venom proteome of the rear-fanged snake Thamnodynastes strigatus , in combination with a transcriptomic evaluation of the venom gland. About 60% of all transcripts code for putative venom components. A striking finding is that the most abundant type of transcript (∼47%) and also the major protein type in the venom correspond to a new kind of matrix metalloproteinase (MMP) that is unrelated to the classical snake venom metalloproteinases found in all snake families. These enzymes were recently suggested as possible venom components, and we show here that they are proteolytically active and probably recruited to venom from a MMP-9 ancestor. Other unusual proteins were suggested to be venom components: a protein related to lactadherin and an EGF repeat-containing transcript. Despite these unusual molecules, seven toxin classes commonly found in typical venomous snakes are also present in the venom. These results support the evidence that the arsenals of these snakes are very diverse and harbor new types of biologically important molecules.


Assuntos
Colubridae/metabolismo , Metaloproteinases da Matriz/química , Proteoma/química , Proteômica/métodos , Venenos de Serpentes/química , Sequência de Aminoácidos , Animais , Metaloproteinases da Matriz/classificação , Dados de Sequência Molecular , Filogenia , Ligação Proteica , Proteoma/classificação , Alinhamento de Sequência , Venenos de Serpentes/antagonistas & inibidores , Venenos de Serpentes/classificação , Venenos de Serpentes/metabolismo , Transcriptoma
15.
J Proteome Res ; 8(12): 5431-41, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19845402

RESUMO

Dengue fever is the world's most important arthropod-born viral disease affecting humans. To contribute to a better understanding of its pathogenesis, this study aims to identify proteins differentially expressed in plasmas from severe dengue fever patients relative to healthy donors. The use of 2-D Fluorescence Difference Gel Electrophoresis to analyze plasmas depleted of six high-abundance proteins (albumin, IgG, antitrypsin, IgA, transferrin and haptoglobin) allowed for the detection of 73 differentially expressed protein spots (n = 13, p < 0.01), of which 37 could be identified by mass spectrometry. These 37 spots comprised a total of 14 proteins, as follows: 7 had increased expression in plasmas from dengue fever patients (C1 inhibitor, alpha1-antichymotrypsin, vitamin D-binding protein, fibrinogen gamma-chain, alpha1-acid glycoprotein, apolipoprotein J and complement component C3c), while 7 others had decreased expression in the same samples (alpha-2 macroglobulin, prothrombin, histidine-rich glycoprotein, apolipoproteins A-IV and A-I, transthyretin and complement component C3b). The possible involvement of these proteins in the inflammatory process triggered by dengue virus infection and in the repair mechanisms of vascular damage occurring in this pathology is discussed in this study.


Assuntos
Proteínas Sanguíneas/análise , Dengue/sangue , Proteômica/métodos , Adolescente , Adulto , Idoso , Estudos de Casos e Controles , Dengue/patologia , Regulação para Baixo , Eletroforese em Gel Bidimensional , Feminino , Humanos , Inflamação , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Estudos Prospectivos , Regulação para Cima , Adulto Jovem
16.
J Proteome Res ; 8(5): 2351-60, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19267469

RESUMO

Snake venoms are mixtures of proteins and peptides with different biological activities, many of which are very toxic. Several animals, including the opossum Didelphis aurita, are resistant to snake venoms due to the presence of neutralizing factors in their blood. An antihemorrhagic protein named DM43 was isolated from opossum serum. It inhibits snake venom metalloproteinases through noncovalent complex formation with these enzymes. In this study, we have used DM43 and proteomic techniques to explore snake venom subproteomes. Four crotalid venoms were chromatographed through an affinity column containing immobilized DM43. Bound fractions were analyzed by one- and two-dimensional gel electrophoresis, followed by identification by MALDI-TOF/TOF mass spectrometry. With this approach, we could easily visualize and compare the metalloproteinase compositions of Bothrops atrox, Bothrops jararaca, Bothrops insularis, and Crotalus atrox snake venoms. The important contribution of proteolytic processing to the complexity of this particular subproteome was demonstrated. Fractions not bound to DM43 column were similarly analyzed and were composed mainly of serine proteinases, C-type lectins, C-type lectin-like proteins, l-amino acid oxidases, nerve growth factor, cysteine-rich secretory protein, a few metalloproteinases (and their fragments), and some unidentified spots. Although very few toxin families were represented in the crotalid venoms analyzed, the number of protein spots detected was in the hundreds, indicating an important protein variability in these natural secretions. DM43 affinity chromatography and associated proteomic techniques proved to be useful tools to separate and identify proteins from snake venoms, contributing to a better comprehension of venom heterogeneity.


Assuntos
Proteínas Sanguíneas/metabolismo , Venenos de Crotalídeos/análise , Proteoma/análise , Proteômica/métodos , Animais , Proteínas Sanguíneas/farmacologia , Bothrops/classificação , Bothrops/metabolismo , Cromatografia de Afinidade , Venenos de Crotalídeos/metabolismo , Eletroforese em Gel Bidimensional , Metaloproteases/antagonistas & inibidores , Metaloproteases/metabolismo , Proteoma/metabolismo , Especificidade da Espécie , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
17.
J Proteomics ; 72(2): 241-55, 2009 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-19211044

RESUMO

A joint transcriptomic and proteomic approach employing two-dimensional electrophoresis, liquid chromatography and mass spectrometry was carried out to identify peptides and proteins expressed by the venom gland of the snake Bothrops insularis, an endemic species of Queimada Grande Island, Brazil. Four protein families were mainly represented in processed spots, namely metalloproteinase, serine proteinase, phospholipase A(2) and lectin. Other represented families were growth factors, the developmental protein G10, a disintegrin and putative novel bradykinin-potentiating peptides. The enzymes were present in several isoforms. Most of the experimental data agreed with predicted values for isoelectric point and M(r) of proteins found in the transcriptome of the venom gland. The results also support the existence of posttranslational modifications and of proteolytic processing of precursor molecules which could lead to diverse multifunctional proteins. This study provides a preliminary reference map for proteins and peptides present in Bothrops insularis whole venom establishing the basis for comparative studies of other venom proteomes which could help the search for new drugs and the improvement of venom therapeutics. Altogether, our data point to the influence of transcriptional and post-translational events on the final venom composition and stress the need for a multivariate approach to snake venomics studies.


Assuntos
Proteômica/métodos , Venenos de Serpentes/análise , Sequência de Aminoácidos , Animais , Bothrops , Cromatografia Líquida/métodos , Eletroforese em Gel Bidimensional , Lectinas/química , Espectrometria de Massas/métodos , Dados de Sequência Molecular , Peptídeos/química , Fosfolipases/análise , Processamento de Proteína Pós-Traducional , Proteínas/análise , Transcrição Gênica
18.
Eur J Biochem ; 269(24): 6052-62, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12473101

RESUMO

Bothrops snake venoms are known to induce local tissue damage such as hemorrhage and myonecrosis. The opossum Didelphis marsupialis is resistant to these snake venoms and has natural venom inhibitors in its plasma. The aim of this work was to clone and study the chemical, physicochemical and biological properties of DM64, an antimyotoxic protein from opossum serum. DM64 is an acidic protein showing 15% glycosylation and with a molecular mass of 63 659 Da when analysed by MALDI-TOF MS. It was cloned and the amino acid sequence was found to be homologous to DM43, a metalloproteinase inhibitor from D. marsupialis serum, and to human alpha1B-glycoprotein, indicating the presence of five immunoglobulin-like domains. DM64 neutralized both the in vivo myotoxicity and the in vitro cytotoxicity of myotoxins I (mt-I/Asp49) and II (mt-II/Lys49) from Bothrops asper venom. The inhibitor formed noncovalent complexes with both toxins, but did not inhibit the PLA2 activity of mt-I. Accordingly, DM64 did not neutralize the anticoagulant effect of mt-I nor its intracerebroventricular lethality, effects that depend on its enzymatic activity, and which demonstrate the dissociation between the catalytic and toxic activities of this Asp49 myotoxic PLA2. Furthermore, despite its similarity with metalloproteinase inhibitors, DM64 presented no antihemorrhagic activity against Bothrops jararaca or Bothrops asper crude venoms, and did not inhibit the fibrinogenolytic activity of jararhagin or bothrolysin. This is the first report of a myotoxin inhibitor with an immunoglobulin-like structure isolated and characterized from animal blood.


Assuntos
Proteínas Sanguíneas/química , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/isolamento & purificação , Venenos de Crotalídeos/antagonistas & inibidores , Venenos de Crotalídeos/enzimologia , Glicoproteínas , Imunoglobulinas , Metaloendopeptidases/antagonistas & inibidores , Inibidores de Proteases/isolamento & purificação , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas Sanguíneas/metabolismo , Proteínas Sanguíneas/farmacologia , Bothrops , Clonagem Molecular , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Biblioteca Gênica , Humanos , Hidrólise , Focalização Isoelétrica , Fígado/metabolismo , Camundongos , Dados de Sequência Molecular , Gambás , Fosfolipases A/metabolismo , Fosfolipases A2 , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA