Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 203: 116438, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38749154

RESUMO

Microorganisms quickly colonise microplastics entering the ocean, forming a biofilm that, if ingested, is consumed with the microplastics. Past research often neglects to expose fish to biofouled microplastics, opting only for clean microplastics despite the low likelihood that fish will encounter clean microplastics. Here, we investigate the physiological impacts of biofouled polyethylene microplastic (300-335 µm) exposure in juvenile fish. Intermittent flow respirometry, antioxidant enzyme activity, and lipid peroxidation were investigated after fish were exposed to clean, biofouled, or no microplastic beads. Fish exposed to biofouled microplastics had a wider aerobic scope than those exposed to clean microplastics while antioxidant enzyme and lipid peroxidation levels were higher in clean microplastics. Clean microplastic exposure indicated higher fitness costs, potentially due to a nutritional advantage of the biofilm or varying bioavailability. These findings highlight the importance of replicating natural factors in exposure experiments when predicting the impacts of increasing pollutants in marine systems.


Assuntos
Microplásticos , Estresse Oxidativo , Poluentes Químicos da Água , Animais , Estresse Oxidativo/efeitos dos fármacos , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Perciformes/fisiologia , Peroxidação de Lipídeos/efeitos dos fármacos , Incrustação Biológica
2.
Mar Pollut Bull ; 192: 115079, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37236095

RESUMO

Marine microplastics are rapidly colonised by a microbial community which form a biofilm unique from the surrounding seawater that often contains infochemical-producing species associated with food sources. Here, we investigated whether juvenile kingfish (Seriola lalandi) were more attracted to biofouled plastics compared to clean plastics. Plastics were exposed to unfiltered seawater for one month to cultivate a microbial community. An olfactory behavioural experiment showed little difference in their response to the biofilm compared to clean plastic and control treatment. Further, ingestion experiments demonstrated that S. lalandi ingested fewer biofouled microplastics compared to clean microplastics. However, this was likely due to the bioavailability of the biofouled microplastics. This study highlights that while juvenile kingfish will ingest microplastics, they are not more attracted to those with a naturally acquired biofilm.


Assuntos
Perciformes , Plásticos , Animais , Microplásticos , Água do Mar , Alimentos
3.
Conserv Physiol ; 11(1): coad028, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37179709

RESUMO

Sharks can incur a range of external injuries throughout their lives that originate from various sources, but some of the most notable wounds in viviparous shark neonates are at the umbilicus. Umbilical wounds typically heal within 1 to 2 months post-parturition, depending on the species, and are therefore often used as an indicator of neonatal life stage or as a relative measure of age [e.g. grouping by umbilical wound classes (UWCs), according to the size of their umbilicus]. To improve comparisons of early-life characteristics between studies, species and across populations, studies using UWCs should integrate quantitative changes. To overcome this issue, we set out to quantify changes in umbilicus size of neonatal blacktip reef sharks (Carcharhinus melanopterus) around the island of Moorea, French Polynesia, based on temporal regression relationships of umbilicus size. Here, we provide a detailed description for the construction of similar quantitative umbilical wound classifications, and we subsequently validate the accuracy of our classification and discuss two examples to illustrate its efficacy, depletion rate of maternally provided energy reserves and estimation of parturition period. A significant decrease in body condition in neonatal sharks as early as twelve days post-parturition suggests a rapid depletion of in utero-allocated energy reserves stored in the liver. Back calculations of timing of birth based on the umbilicus size of neonates determine a parturition season from September to January, with most parturitions occurring during October and November. As such, this study contributes valuable data to inform the conservation and management of young-of-the-year blacktip reef sharks, and we therefore encourage the construction and use of similar regression relationships for other viviparous shark species.

4.
J Exp Biol ; 225(22)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36168768

RESUMO

Accelerative manoeuvres, such as fast-starts, are crucial for fish to avoid predation. Escape responses are fast-starts that include fundamental survival traits for prey that experience high predation pressure. However, no previous study has assessed escape performance in neonate tropical sharks. We quantitatively evaluated vulnerability traits of neonate tropical sharks by testing predictions on their fast-start escape performance. We predicted (1) high manoeuvrability, given their high flexibility, but (2) low propulsive locomotion owing to the drag costs associated with pectoral fin extension during escape responses. Further, based on previous work on dogfish, Squalus suckleyi, we predicted (3) long reaction times (as latencies longer than teleosts, >20 ms). We used two-dimensional, high-speed videography analysis of mechano-acoustically stimulated neonate blacktip reef shark, Carcharhinus melanopterus (n=12), and sicklefin lemon shark, Negaprion acutidens (n=8). Both species performed a characteristic C-start double-bend response (i.e. two body bends), but single-bend responses were only observed in N. acutidens. As predicted, neonate sharks showed high manoeuvrability with high turning rates and tight turning radii (3-11% of body length) but low propulsive performance (i.e. speed, acceleration and velocity) when compared with similar-sized teleosts and S. suckleyi. Contrary to expectations, escape latencies were <20 ms in both species, suggesting that the neurophysiological system of sharks when reacting to a predatory attack may not be limited to long response times. These results provide a quantitative assessment of survival traits in neonate tropical sharks that will be crucial for future studies that consider the vulnerability of these sharks to predation.


Assuntos
Tubarões , Animais , Tubarões/fisiologia , Fenômenos Biomecânicos , Comportamento Predatório/fisiologia , Locomoção , Cação (Peixe)
5.
Sci Total Environ ; 782: 146854, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33853007

RESUMO

Temperature and oxygen limit the distribution of marine ectotherms. Haematological traits underlying blood-oxygen carrying capacity are thought to be correlated with thermal tolerance in certain fishes, and this relationship is hypothesised to be explained by oxygen supply capacity. We tested this hypothesis using reef shark neonates as experimental models because they live near their upper thermal limits and are physiologically sensitive to low oxygen conditions. We first described in situ associations between temperature and oxygen at the study site (Moorea, French Polynesia) and found that the habitats for reef shark neonates (Carcharhinus melanopterus and Negaprion acutidens) were hyperoxic at the maximum recorded temperatures. Next, we tested for in situ associations between thermal habitat characteristics and haematological traits of neonates. Contrary to predictions, we only demonstrated a negative association between haemoglobin concentration and maximum habitat temperatures in C. melanopterus. Next, we tested for ex situ associations between critical thermal maximum (CTMax) and haematological traits, but only demonstrated a negative association between haematocrit and CTMax in C. melanopterus. Finally, we measured critical oxygen tension (pcrit) ex situ and estimated its temperature sensitivity to predict oxygen-dependent values of CTMax. Estimated temperature sensitivity of pcrit was similar to reported values for sharks and skates, and predicted values for CTMax equalled maximum habitat temperatures. These data demonstrate unique associations between haematological traits and thermal tolerance in a reef shark that are likely not explained by oxygen supply capacity. However, a relationship between oxygen supply capacity and thermal tolerance remains to be demonstrated empirically.


Assuntos
Tubarões , Animais , Ecossistema , Humanos , Recém-Nascido , Oxigênio , Polinésia , Temperatura
6.
Biodivers Data J ; 7: e35303, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31523158

RESUMO

We present the first official record of the by-the-wind-sailor (Velella velella) for Ecuador. Twelve individuals were found along different beaches of San Cristóbal and Santa Cruz Islands in Galápagos Archipelago, Ecuador. These sightings may be influenced by El Niño Southern Oscillation events.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA