Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(38): 26879-26891, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37692354

RESUMO

Nanosized spinel ferrites Co1-xNixFe2O4 (where x = 0.0-1.0) or CNFO have been produced using a chemical method. The crystal structure's characteristics have been determined through the utilization of X-ray diffraction (XRD). It has been demonstrated that all samples have a single phase with cubic syngony (space group Fd3̄m). The lattice parameter and unit cell volume behavior correlate well with the average ionic radii of Co2+ and Ni2+ ions and their coordination numbers. Thus, an increase in the Ni2+ content from x = 0.0 to x = 1.0 leads to a decrease in the lattice parameter (from 8.3805 to 8.3316 Å) and unit cell volume (from 58.86 to 57.83 Å3). Elastic properties have been investigated using Fourier transform infrared (FTIR) analysis. The peculiarities of the microwave properties have been analyzed by the measured S-parameters in the range of 8-18 GHz. It was assumed that the energy losses due to reflection are a combination of electrical and magnetic losses due to polarization processes (dipole polarization) and magnetization reversal processes in the region of inter-resonant processes. A significant attenuation of the reflected wave energy (-10 … -21.8 dB) opens broad prospects for practical applications.

2.
Sci Rep ; 11(1): 18342, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526572

RESUMO

Indium-substituted strontium hexaferrites were prepared by the conventional solid-phase reaction method. Neutron diffraction patterns were obtained at room temperature and analyzed using the Rietveld methods. A linear dependence of the unit cell parameters is found. In3+ cations are located mainly in octahedral positions of 4fVI and 12 k. The average crystallite size varies within 0.84-0.65 µm. With increasing substitution, the TC Curie temperature decreases monotonically down to ~ 520 K. ZFC and FC measurements showed a frustrated state. Upon substitution, the average and maximum sizes of ferrimagnetic clusters change in the opposite direction. The Mr remanent magnetization decreases down to ~ 20.2 emu/g at room temperature. The Ms spontaneous magnetization and the keff effective magnetocrystalline anisotropy constant are determined. With increasing substitution, the maximum of the ε/ real part of permittivity decreases in magnitude from ~ 3.3 to ~ 1.9 and shifts towards low frequencies from ~ 45.5 GHz to ~ 37.4 GHz. The maximum of the tg(α) dielectric loss tangent decreases from ~ 1.0 to ~ 0.7 and shifts towards low frequencies from ~ 40.6 GHz to ~ 37.3 GHz. The low-frequency maximum of the µ/ real part of permeability decreases from ~ 1.8 to ~ 0.9 and slightly shifts towards high frequencies up to ~ 34.7 GHz. The maximum of the tg(δ) magnetic loss tangent decreases from ~ 0.7 to ~ 0.5 and shifts slightly towards low frequencies from ~ 40.5 GHz to ~ 37.7 GHz. The discussion of microwave properties is based on the saturation magnetization, natural ferromagnetic resonance and dielectric polarization types.

3.
Sci Rep ; 10(1): 14411, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873846

RESUMO

A new method for the specific surface energy investigation based on a combination of the force spectroscopy and the method of nanofriction study using atomic force microscopy was proposed. It was shown that air humidity does not affect the results of investigation by the proposed method as opposed to the previously used methods. Therefore, the method has high accuracy and repeatability in air without use of climate chambers and liquid cells. The proposed method has a high local resolution and is suitable for investigation of the specific surface energy of individual nanograins or fixed nanoparticles. The achievements described in the paper demonstrate one of the method capabilities, which is to control the growth mechanism of thin magnetic films. The conditions for the transition of the growth mechanism of thin Ni80Fe20 films from island to layer-by-layer obtained via electrolyte deposition have been determined using the proposed method and the purpose made probes with Ni coating.

4.
RSC Adv ; 10(54): 32638-32651, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35516497

RESUMO

Herein, we investigated the correlation between the chemical composition, microstructure, and microwave properties of composites based on lightly Tb/Tm-doped Sr-hexaferrites (SrTb0.01Tm0.01Fe11.98O19) and spinel ferrites (AFe2O4, A = Co, Ni, Zn, Cu, or Mn), which were fabricated by a one-pot citrate sol-gel method. Powder XRD patterns of products confirmed the presence of pure hexaferrite and spinel phases. Microstructural analysis was performed based on SEM images. The average grain size for each phase in the prepared composites was calculated. Comprehensive investigations of dielectric properties (real (ε') and imaginary parts (ε'') of permittivity, dielectric loss tangent (tan(δ)), and AC conductivity) were performed in the 1-3 × 106 Hz frequency range at 20-120 °C. Frequency dependency of microwave properties were investigated using the coaxial method in frequency range of 2-18 GHz. The non-linear behavior of the main microwave properties with a change in composition may be due to the influence of the soft magnetic phase. It was found that Mn- and Ni-spinel ferrites achieved the strongest electromagnetic absorption. This may be due to differences in the structures of the electron shell and the radii of the A-site ions in the spinel phase. It was discovered that the ionic polarization transformed into the dipole polarization.

5.
Nanomaterials (Basel) ; 9(8)2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31443206

RESUMO

The Nb3+ ion substituted Sr hexaferrites (SrNbxFe12-xO19 (x = 0.00-0.08) hexaferrites (HFs)) were fabricated via a citrate-assisted sol-gel approach. X-ray powder diffractometer analysis affirmed the pureness of all products. The crystallite sizes of the products which were estimated from Scherrer equation were in the 36-40 nm range. The chemical component of the samples was proved by Energy-dispersive X-ray spectroscopy (EDX) and Elemental mapping. The hexagonal morphology of all products was confirmed by Field Emission Scanning Electron Microscopy (FE-SEM). The electrical conduction mechanisms and dielectric properties of a variety of Nb3+ions-substituted SrNbxFe12-xO19 HFs were investigated by a complex impedance system. Dielectric parameters such as conductivity, dielectric constant, dielectric loss, dielectric tangent loss and complex modulus, were studied at temperatures up to 120 °C in a frequency range varying from 1.0 Hz to 3.0 MHz for several Nb ratios. The frequency dependence of the conductivity was found to comply with the power law with diverse exponents at all frequencies studied here. Subsequently, incremental tendencies in dc conductivity with temperature indicate that the substituted Sr-HFs leads to a semiconductor-semimetal like behavior. This could be attributable to a feature of conduction mechanism which is based on the tunneling processes. Additionally, the dielectric dispersion pattern was also explained by Maxwell-Wagner polarization in accordance with the Koop's phenomenological theory.

6.
Nanomaterials (Basel) ; 9(6)2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31159205

RESUMO

This paper reports the influence of dysprosium ion (Dy3+) substitution on the structural and magnetic properties of NiDyxFe2-xO4 (0.0 ≤ x ≤ 0.1) nanoparticles (NPs) prepared using a hydrothermal method. The structure and morphology of the as-synthesized NPs were characterized via X-ray diffraction (XRD), scanning and transmission electron microscope (SEM, and TEM) analyses. 57Fe Mössbauer spectra were recorded to determine the Dy3+ content dependent variation in the line width, isomer shift, quadrupole splitting, and hyperfine magnetic fields. Furthermore, the magnetic properties of the prepared NPs were also investigated by zero-field cooled (ZFC) and field cooled (FC) magnetizations and AC susceptibility measurements. The MZFC (T) results showed a blocking temperature (TB). Below TB, the products behave as ferromagnetic (FM) and act superparamagnetic (SPM) above TB. The MFC (T) curves indicated the existence of super-spin glass (SSG) behavior below Ts (spin-glass freezing temperature). The AC susceptibility measurements confirmed the existence of the two transition temperatures (i.e., TB and Ts). Numerous models, e.g., Neel-Arrhenius (N-A), Vogel-Fulcher (V-F), and critical slowing down (CSD), were used to investigate the dynamics of the systems. It was found that the Dy substitution enhanced the magnetic interactions.

7.
Nanomaterials (Basel) ; 9(1)2018 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-30585225

RESUMO

Manganese (Mn)- and yttrium (Y)-substituted Sr-nanohexaferrites (MYSNHFs) of composition Sr1-xMnxFe12-xYxO19 (with 0.0 ≤ x ≤ 0.5) were prepared by citrate sol-gel autocombustion method. As-prepared MYSNHFs were characterized via diverse analytical techniques to determine the influence of Mn and Y cosubstitution on their microstructures and magnetic properties. 57Fe Mössbauer spectra of the MYSNHFs were used to evaluate the variation in the line width, isomer shift, quadrupole splitting, and hyperfine magnetic field values. It was shown that the dopant ions could preferentially occupy the 12k, 4f2, and 2b sites. Furthermore, the observed shift in the blocking temperatures of the studied MYSNHFs towards lower values with rising Mn2+ and Y3+ contents was attributed to the overall particles size reduction. Meanwhile, the AC susceptibility of the proposed MYSNHFs revealed that the magnetic interactions were weakened with the increase in dopant contents which was ascribed to the replacement of both Sr2+ and Fe3+ ions by the Mn2+ and Y3+ dopants.

8.
Dalton Trans ; 46(28): 9010-9021, 2017 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-28654128

RESUMO

BaFe12-xGaxO19 (x ≤ 1.2) hexaferrites were synthesized via the usual ceramic technology. It has been established that with an increase in x, the unit cell and magnetic parameters monotonically decrease. The frequency of natural ferromagnetic resonance firstly decreases from 49.6 GHz down to 49.1 GHz when x = 0.6, and then it increases up to 50.5 GHz. The line width monotonically increases from 3.5 GHz up to 5 GHz. The peak amplitude of the resonant curve changes slightly with the exception of when x = 0.9, when it reaches -16 dB. The 1.3 GHz kOe-1 frequency shift in the bias field is more intensive for small values, when x = 0.3. The decreasing values of the magnetic parameters are a result of the dilution of Fe3+-O2--Fe3+ superexchange interactions. The behavior of the amplitude-frequency characteristics is largely determined through the reduction of uniaxial exchange anisotropy. The prospects of Ga-substituted hexaferrites acting as a material that effectively absorbs the high-frequency electromagnetic radiation are shown.

9.
J Phys Condens Matter ; 19(26): 266214, 2007 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-21694091

RESUMO

The crystal structure and magnetotransport properties of the A-site ionic ordered state in Pr(0.70)Ba(0.30)MnO(3+δ) (δ = 0, 0.025) have been investigated. It is shown that such a state can be formed in complex manganites with cation ratios [Formula: see text] by using a 'two-step' reduction-reoxidization method. The parent A-site ionic disordered Pr(0.70)Ba(0.30)MnO(3+δ) (δ = 0) compound is an orthorhombic (SG = Imma, Z = 4) ferromagnet with Curie temperature T(C)≈173 K and ground-state spontaneous magnetic moment σ(S)∼3.70 µ(B)/f.u. It exhibits two metal-insulator transitions, at T(I)∼128 K and T(II)∼173 K, as well as two peaks of magnetoresistance ∼74% and ∼79% in a field of 50 kOe. The parent A-site ionic disordered Pr(0.70)Ba(0.30)MnO(3+δ) (δ = 0) sample used in our studies has an average grain size [Formula: see text]. Successive annealing of this sample in vacuum P[O(2)]≈10(-4) Pa and then in air at T = 800 °C leads to the destruction of its initial grain structure and to its chemical separation into two phases: (i) oxygen stoichiometric A-site ordered PrBaMn(2)O(6) with a tetragonal (SG = P4/mmm, Z = 2) perovskite-like unit cell and Curie temperature T(C)≈313 K and (ii) oxygen superstoichiometric A-site disordered Pr(0.90)Ba(0.10)MnO(3.05) with an orthorhombic (SG = Pnma, Z = 4) perovskite-like unit cell and Curie temperature T(C)≈133 K. This processed sample has a spontaneous magnetic moment σ(S)∼2.82 µ(B)/f.u. in its ground state, and σ(S)∼0.59 µ(B)/f.u. at T∼300 K. It also exhibits a magnetoresistance of ∼14% at ∼313 K in a field of 50 kOe. This processed sample has a reduced average grain size [Formula: see text] nm. The two magnetic phases, Pr(0.90)Ba(0.10)MnO(3.05) and PrBaMn(2)O(6), are exchange-coupled. For Pr(0.90)Ba(0.10)MnO(3.05) the temperature hysteresis is ∼22 K in a field of 10 Oe and ∼5 K in a field of 1 kOe. The observed magnetic properties are interpreted in terms of chemical phase separation, grain size, and A-site ionic ordering effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA