Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 12: 496, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30087590

RESUMO

The ability to precisely monitor and manipulate neural circuits is essential to understand the brain. Advancements over the last decade in optical techniques such as calcium imaging and optogenetics have empowered researchers to gain insight into brain function by systematically manipulating or monitoring defined neural circuits. Combining these cutting-edge techniques enables a more direct mechanism for ascribing neural dynamics to behavior. Here, we developed a miniaturized integrated microscope that allows for simultaneous optogenetic manipulation and cellular-resolution calcium imaging within the same field of view in freely behaving mice. The integrated microscope has two LEDs, one filtered with a 435-460 nm excitation filter for imaging green calcium indicators, and a second LED filtered with a 590-650 nm excitation filter for optogenetic modulation of red-shifted opsins. We developed and tested this technology to minimize biological and optical crosstalk. We observed insignificant amounts of biological and optical crosstalk with regards to the optogenetic LED affecting calcium imaging. We observed some amounts of residual crosstalk of the imaging light on optogenetic manipulation. Despite residual crosstalk, we have demonstrated the utility of this technology by probing the causal relationship between basolateral amygdala (BLA) -to- nucleus accumbens (NAc) circuit function, behavior, and network dynamics. Using this integrated microscope we were able to observe both a significant behavioral and cellular calcium response of the optogenetic modulation on the BLA-to-NAc circuit. This integrated strategy will allow for routine investigation of the causality of circuit manipulation on cellular-resolution network dynamics and behavior.

2.
Science ; 323(5910): 133-8, 2009 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-19023044

RESUMO

We present single-molecule, real-time sequencing data obtained from a DNA polymerase performing uninterrupted template-directed synthesis using four distinguishable fluorescently labeled deoxyribonucleoside triphosphates (dNTPs). We detected the temporal order of their enzymatic incorporation into a growing DNA strand with zero-mode waveguide nanostructure arrays, which provide optical observation volume confinement and enable parallel, simultaneous detection of thousands of single-molecule sequencing reactions. Conjugation of fluorophores to the terminal phosphate moiety of the dNTPs allows continuous observation of DNA synthesis over thousands of bases without steric hindrance. The data report directly on polymerase dynamics, revealing distinct polymerization states and pause sites corresponding to DNA secondary structure. Sequence data were aligned with the known reference sequence to assay biophysical parameters of polymerization for each template position. Consensus sequences were generated from the single-molecule reads at 15-fold coverage, showing a median accuracy of 99.3%, with no systematic error beyond fluorophore-dependent error rates.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , Análise de Sequência de DNA/métodos , Sequência de Bases , Sequência Consenso , DNA/biossíntese , DNA Circular/química , DNA de Cadeia Simples/química , Desoxirribonucleotídeos/metabolismo , Enzimas Imobilizadas , Corantes Fluorescentes , Cinética , Nanoestruturas , Espectrometria de Fluorescência
3.
Biophys J ; 93(5): 1661-76, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17496028

RESUMO

We have investigated the kinetics of DNA hybridization to oligonucleotide arrays on high-capacity porous silica films that were deposited by two techniques. Films created by spin coating pure colloidal silica suspensions onto a substrate had pores of approximately 23 nm, relatively low porosity (35%), and a surface area of 17 times flat glass (for a 0.3-microm film). In the second method, latex particles were codeposited with the silica by spin coating and then pyrolyzed, which resulted in larger pores (36 nm), higher porosity (65%), and higher surface area (26 times flat glass for a 0.3-microm film). As a result of these favorable properties, the templated silica hybridized more quickly and reached a higher adsorbed target density (11 vs. 8 times flat glass at 22 degrees C) than the pure silica. Adsorption of DNA onto the high-capacity films is controlled by traditional adsorption and desorption coefficients, as well as by morphology factors and transient binding interactions between the target and the probes. To describe these effects, we have developed a model based on the analogy to diffusion of a reactant in a porous catalyst. Adsorption values (k(a), k(d), and K) measured on planar arrays for the same probe/target system provide the parameters for the model and also provide an internally consistent comparison for the stability of the transient complexes. The interpretation of the model takes into account factors not previously considered for hybridization in three-dimensional films, including the potential effects of heterogeneous probe populations, partial probe/target complexes during diffusion, and non-1:1 binding structures. The transient complexes are much less stable than full duplexes (binding constants for full duplexes higher by three orders of magnitude or more), which may be a result of the unique probe density and distribution that is characteristic of the photolithographically patterned arrays. The behavior at 22 degrees C is described well by the predictive equations for morphology, whereas the behavior at 45 degrees C deviates from expectations and suggests that more complex phenomena may be occurring in that temperature regime.


Assuntos
Biofísica/métodos , Sondas de DNA/química , DNA/química , Dióxido de Silício/química , Adsorção , Difusão , Vidro , Cinética , Microscopia Eletrônica de Varredura , Hibridização de Ácido Nucleico , Oligonucleotídeos/química , Polímeros/química , Porosidade , Ligação Proteica , Propriedades de Superfície
4.
Anal Biochem ; 358(2): 225-38, 2006 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16982029

RESUMO

The hybridization kinetics of oligonucleotide targets to oligonucleotide probe arrays synthesized using photolithographic fabrication methods developed by Affymetrix have been measured. Values for the fundamental adsorption parameters, k(a), k(d), and K, were determined at both room temperature and 45 degrees C by monitoring the hybridization of fluorescently labeled targets to the array. The values for these parameters and the adsorbed target density (

Assuntos
Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Oligonucleotídeos/química , Adsorção , Sequência de Bases , Cinética , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA