Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1298: 342401, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38462340

RESUMO

BACKGROUND: High-resolution matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) and nuclear magnetic resonance (NMR) spectroscopy are powerful tools to identify unknown psychoactive substances. However, in complex matrices, trace levels of unknown substances usually require additional fractionation and concentration. Specialized liquid chromatography systems are necessary for both techniques. The small flow rate of nano LC, typically paired with MALDI-TOF MS, often results in prolonged fractionation times. Conversely, the larger flow rate of semi-preparative LC, used for NMR analysis, can be time-consuming and labor-intensive when concentrating samples. To address these issues, we developed an integrated automatic system that integrated to regular LC. RESULT: Automatic spot collector (ASC) and automatic fraction collector (AFC) were present in this study. The ASC utilized in-line matrix mixing, full-contact spotting and real time heating (50 °C), achieving great capacity of 5 µL droplet on MALDI plate, high recovery (76-116%) and rapid evaporation in 2 min. The analytes were concentrated 4-8 times, forming even crystallization, reaching the detection limit at the concentration of 50 µg L-1 for 12 psychoactive substances in urine. The AFC utilizes flexible tubing which flash-tapped the microtube's upper rim (3 mm depth) instead of reaching the bottom. This method prevents sample loss and minimizes the robotic arm's movement, providing a high fractionating speed at 6 s 12 psychoactive compounds were fractionated in a single round analysis (recovery: 81%-114%). Methamphetamine and nitrazepam obtained from drug-laced coffee samples were successful analyzed with photodiode array (PDA) after one AFC round and NMR after five rounds. SIGNIFICANCE: The ASC device employed real-time heating, in-line matrix mixing, and full-contact spotting to facilitate the samples spotting onto the MALDI target plate, thereby enhancing detection sensitivity in low-concentration and complex samples. The AFC device utilized the novel flash-tapping method to achieve rapid fractionation and high recovery rate. These devices were assembled using commercially available components, making them affordable (400 USD) for most laboratories while still meeting the required performance for advanced commercialized systems.


Assuntos
Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Cromatografia Líquida/métodos , Cristalização , Espectroscopia de Ressonância Magnética
2.
Sensors (Basel) ; 21(3)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498437

RESUMO

This study aimed to develop an automated optical inspection (AOI) system that can rapidly and precisely measure the dimensions of microchannels embedded inside a transparent polymeric substrate, and can eventually be used on the production line of a factory. The AOI system is constructed based on Snell's law. The concept holds that, when light travels through two transparent media (air and the microfluidic chip transparent material), by capturing the parallel refracted light from a light source that went through the microchannel using a camera with a telecentric lens, the image can be analyzed using formulas derived from Snell's law to measure the dimensions of the microchannel cross-section. Through the NI LabVIEW 2018 SP1 programming interface, we programmed this system to automatically analyze the captured image and acquire all the needed data. The system then processes these data using custom-developed formulas to calculate the height and width measurements of the microchannel cross-sections and presents the results on the human-machine interface (HMI). In this study, a single and straight microchannel with a cross-sectional area of 300 µm × 300 µm and length of 44 mm was micromachined and sealed with another polymeric substrate by a solvent bonding method for experimentations. With this system, 45 cross-sectional areas along the straight microchannel were measured within 20 s, and experiment results showed that the average measured error was less than 2%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA