Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Ther Methods Clin Dev ; 32(2): 101255, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38715734

RESUMO

Gene silencing without gene editing holds great potential for the development of safe therapeutic applications. Here, we describe a novel strategy to concomitantly repress multiple genes using zinc finger proteins fused to Krüppel-Associated Box repression domains (ZF-Rs). This was achieved via the optimization of a lentiviral system tailored for the delivery of ZF-Rs in hematopoietic cells. We showed that an optimal design of the lentiviral backbone is crucial to multiplex up to three ZF-Rs or two ZF-Rs and a chimeric antigen receptor. ZF-R expression had no impact on the integrity and functionality of transduced cells. Furthermore, gene repression in ZF-R-expressing T cells was highly efficient in vitro and in vivo during the entire monitoring period (up to 10 weeks), and it was accompanied by epigenetic remodeling events. Finally, we described an approach to improve ZF-R specificity to illustrate the path toward the generation of ZF-Rs with a safe clinical profile. In conclusion, we successfully developed an epigenetic-based cell engineering approach for concomitant modulation of multiple gene expressions that bypass the risks associated with DNA editing.

2.
Nat Commun ; 10(1): 1133, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30850604

RESUMO

Genome editing for therapeutic applications often requires cleavage within a narrow sequence window. Here, to enable such high-precision targeting with zinc-finger nucleases (ZFNs), we have developed an expanded set of architectures that collectively increase the configurational options available for design by a factor of 64. These new architectures feature the functional attachment of the FokI cleavage domain to the amino terminus of one or both zinc-finger proteins (ZFPs) in the ZFN dimer, as well as the option to skip bases between the target triplets of otherwise adjacent fingers in each zinc-finger array. Using our new architectures, we demonstrate targeting of an arbitrarily chosen 28 bp genomic locus at a density that approaches 1.0 (i.e., efficient ZFNs available for targeting almost every base step). We show that these new architectures may be used for targeting three loci of therapeutic significance with a high degree of precision, efficiency, and specificity.


Assuntos
Desoxirribonucleases de Sítio Específico do Tipo II/genética , Edição de Genes/métodos , Genoma Humano , Engenharia de Proteínas/métodos , Nucleases de Dedos de Zinco/genética , Pareamento de Bases , Sequência de Bases , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Loci Gênicos , Biblioteca Genômica , Humanos , Mutação INDEL , Células K562 , Biblioteca de Peptídeos , Plasmídeos/química , Plasmídeos/metabolismo , Transformação Genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Nucleases de Dedos de Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA