Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(17): 16912-16922, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37638732

RESUMO

The alkaline earth stannates are touted for their wide band gaps and the highest room-temperature electron mobilities among all of the perovskite oxides. CaSnO3 has the highest measured band gap in this family and is thus a particularly promising ultrawide band gap semiconductor. However, discouraging results from previous theoretical studies and failed doping attempts had described this material as "undopable". Here we redeem CaSnO3 using hybrid molecular beam epitaxy, which provides an adsorption-controlled growth for the phase-pure, epitaxial, and stoichiometric CaSnO3 films. By introducing lanthanum (La) as an n-type dopant, we demonstrate the robust and predictable doping of CaSnO3 with free electron concentrations, n3D, from 3.3 × 1019 cm-3 to 1.6 × 1020 cm-3. The films exhibit a maximum room-temperature mobility of 42 cm2 V-1 s-1 at n3D = 3.3 × 1019 cm-3. Despite having a comparable radius as the host ion, La expands the lattice parameter. Using density functional calculations, this effect is attributed to the energy gain by lowering the conduction band upon volume expansion. Finally, we exploit robust doping by fabricating CaSnO3-based field-effect transistors. The transistors show promise for CaSnO3's high-voltage capabilities by exhibiting low off-state leakage below 2 × 10-5 mA/mm at a drain-source voltage of 100 V and on-off ratios exceeding 106. This work serves as a starting point for future studies on the semiconducting properties of CaSnO3 and many devices that could benefit from CaSnO3's exceptionally wide band gap.

2.
Sci Adv ; 8(51): eadd5328, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36563139

RESUMO

The epitaxial growth of functional oxides using a substrate with a graphene layer is a highly desirable method for improving structural quality and obtaining freestanding epitaxial nanomembranes for scientific study, applications, and economical reuse of substrates. However, the aggressive oxidizing conditions typically used in growing epitaxial oxides can damage graphene. Here, we demonstrate the successful use of hybrid molecular beam epitaxy for SrTiO3 growth that does not require an independent oxygen source, thus avoiding graphene damage. This approach produces epitaxial films with self-regulating cation stoichiometry. Furthermore, the film (46-nm-thick SrTiO3) can be exfoliated and transferred to foreign substrates. These results open the door to future studies of previously unattainable freestanding oxide nanomembranes grown in an adsorption-controlled manner by hybrid molecular beam epitaxy. This approach has potentially important implications for the commercial application of perovskite oxides in flexible electronics and as a dielectric in van der Waals thin-film electronics.

3.
Sci Adv ; 8(21): eabl5668, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35613270

RESUMO

The study of subtle effects on transport in semiconductors requires high-quality epitaxial structures with low defect density. Using hybrid molecular beam epitaxy (MBE), SrTiO3 films with a low-temperature mobility exceeding 42,000 cm2 V-1 s-1 at a low carrier density of 3 × 1017 cm-3 were achieved. A sudden and sharp decrease in residual resistivity accompanied by an enhancement in the superconducting transition temperature were observed across the second Lifshitz transition where the third band becomes occupied, revealing dominant intraband scattering. These films further revealed an anomalous behavior in the Hall carrier density as a consequence of the antiferrodistortive (AFD) transition and the temperature dependence of the Hall scattering factor. Using hybrid MBE growth, phenomenological modeling, temperature-dependent transport measurements, and scanning superconducting quantum interference device imaging, we provide critical insights into the important role of inter- versus intraband scattering and of AFD domain walls on normal-state and superconducting properties of SrTiO3.

4.
Nano Lett ; 21(23): 10006-10011, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34807629

RESUMO

Hysteretic magnetoresistance (MR) is often used as a signature of ferromagnetism in conducting oxide films and heterostructures. Here, magnetotransport is investigated in a nonmagnetic La-doped SrSnO3 film. A 12 nm La:SrSnO3/2 nm SrSnO3/GdScO3 (110) film with insulating behavior exhibited a robust hysteresis loop in the MR at T < 5 K accompanied by an anomaly at ∼±3 T at T < 2.5 K. Furthermore, MR with the field in-plane yielded a value exceeding 100% at 1.8 K. Using detailed temperature-, angle- and magnetic field-dependent resistance measurements, we illustrate the origin of hysteresis is not due to magnetism in the film but rather is associated with the magnetocaloric effect of the substrate. Given GdScO3 and similar substrates are commonly used, this work highlights the importance of thermal coupling to processes in the substrates which must be carefully accounted for in the data interpretation for heterostructures utilizing these substrates.

5.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34353910

RESUMO

Advances in physical vapor deposition techniques have led to a myriad of quantum materials and technological breakthroughs, affecting all areas of nanoscience and nanotechnology which rely on the innovation in synthesis. Despite this, one area that remains challenging is the synthesis of atomically precise complex metal oxide thin films and heterostructures containing "stubborn" elements that are not only nontrivial to evaporate/sublimate but also hard to oxidize. Here, we report a simple yet atomically controlled synthesis approach that bridges this gap. Using platinum and ruthenium as examples, we show that both the low vapor pressure and the difficulty in oxidizing a "stubborn" element can be addressed by using a solid metal-organic compound with significantly higher vapor pressure and with the added benefits of being in a preoxidized state along with excellent thermal and air stability. We demonstrate the synthesis of high-quality single crystalline, epitaxial Pt, and RuO2 films, resulting in a record high residual resistivity ratio (=27) in Pt films and low residual resistivity, ∼6 µΩ·cm, in RuO2 films. We further demonstrate, using SrRuO3 as an example, the viability of this approach for more complex materials with the same ease and control that has been largely responsible for the success of the molecular beam epitaxy of III-V semiconductors. Our approach is a major step forward in the synthesis science of "stubborn" materials, which have been of significant interest to the materials science and the condensed matter physics community.

6.
Nano Lett ; 21(3): 1246-1252, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33263403

RESUMO

We describe a novel approach for the rational design and synthesis of self-assembled periodic nanostructures using martensitic phase transformations. We demonstrate this approach in a thin film of perovskite SrSnO3 with reconfigurable periodic nanostructures consisting of regularly spaced regions of sharply contrasted dielectric properties. The films can be designed to have different periodicities and relative phase fractions via chemical doping or strain engineering. The dielectric contrast within a single film can be tuned using temperature and laser wavelength, effectively creating a variable photonic crystal. Our results show the realistic possibility of designing large-area self-assembled periodic structures using martensitic phase transformations with the potential of implementing "built-to-order" nanostructures for tailored optoelectronic functionalities.

7.
J Org Chem ; 80(24): 12100-14, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26560686

RESUMO

Although transfer of electrophilic alkoxyl ("RO+") from organic peroxides to organometallics offers a complement to traditional methods for etherification, application has been limited by constraints associated with peroxide reactivity and stability. We now demonstrate that readily prepared tetrahydropyranyl monoperoxyacetals react with sp(3) and sp(2) organolithium and organomagnesium reagents to furnish moderate to high yields of ethers. The method is successfully applied to the synthesis of alkyl, alkenyl, aryl, heteroaryl, and cyclopropyl ethers, mixed O,O-acetals, and S,S,O-orthoesters. In contrast to reactions of dialkyl and alkyl/silyl peroxides, the displacements of monoperoxyacetals provide no evidence for alkoxy radical intermediates. At the same time, the high yields observed for transfer of primary, secondary, or tertiary alkoxides, the latter involving attack on neopentyl oxygen, are inconsistent with an SN2 mechanism. Theoretical studies suggest a mechanism involving Lewis acid promoted insertion of organometallics into the O-O bond.


Assuntos
Acetais/química , Ânions/química , Éteres/química , Éteres/síntese química , Peróxidos/química , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA