Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep Methods ; 4(7): 100816, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38981474

RESUMO

We developed a method that utilizes fluorescent labeling of nuclear envelopes alongside cytometry sorting for the selective isolation of Purkinje cell (PC) nuclei. Beginning with SUN1 reporter mice, we GFP-tagged envelopes to confirm that PC nuclei could be accurately separated from other cell types. We then developed an antibody-based protocol to make PC nuclear isolation more robust and adaptable to cerebellar tissues of any genotypic background. Immunofluorescent labeling of the nuclear membrane protein RanBP2 enabled the isolation of PC nuclei from C57BL/6 cerebellum. By analyzing the expression of PC markers, nuclear size, and nucleoli number, we confirmed that our method delivers a pure fraction of PC nuclei. To demonstrate its applicability, we isolated PC nuclei from spinocerebellar ataxia type 7 (SCA7) mice and identified transcriptional changes in known and new disease-associated genes. Access to pure PC nuclei offers insights into PC biology and pathology, including the nature of selective neuronal vulnerability.


Assuntos
Camundongos Endogâmicos C57BL , Células de Purkinje , Animais , Células de Purkinje/metabolismo , Camundongos , Núcleo Celular/metabolismo , Cerebelo/metabolismo , Cerebelo/citologia , Anticorpos , Proteínas de Ligação ao GTP , D-Ala-D-Ala Carboxipeptidase Tipo Serina
2.
Antiviral Res ; 228: 105946, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38925369

RESUMO

SARS-CoV-2 is a betacoronavirus that causes COVID-19, a global pandemic that has resulted in many infections, deaths, and socio-economic challenges. The virus has a large positive-sense, single-stranded RNA genome of ∼30 kb, which produces subgenomic RNAs (sgRNAs) through discontinuous transcription. The most abundant sgRNA is sgRNA N, which encodes the nucleocapsid (N) protein. In this study, we probed the secondary structure of sgRNA N and a shorter model without a 3' UTR in vitro, using the SHAPE (selective 2'-hydroxyl acylation analyzed by a primer extension) method and chemical mapping with dimethyl sulfate and 1-cyclohexyl-(2-morpholinoethyl) carbodiimide metho-p-toluene sulfonate. We revealed the secondary structure of sgRNA N and its shorter variant for the first time and compared them with the genomic RNA N structure. Based on the structural information, we designed gapmers, siRNAs and antisense oligonucleotides (ASOs) to target the N protein coding region of sgRNA N. We also generated eukaryotic expression vectors containing the complete sequence of sgRNA N and used them to screen for new SARS-CoV-2 gene N expression inhibitors. Our study provides novel insights into the structure and function of sgRNA N and potential therapeutic tools against SARS-CoV-2.


Assuntos
Conformação de Ácido Nucleico , RNA Viral , SARS-CoV-2 , Replicação Viral , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , Replicação Viral/efeitos dos fármacos , RNA Viral/genética , Humanos , Antivirais/farmacologia , Antivirais/química , Proteínas do Nucleocapsídeo de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/antagonistas & inibidores , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Proteínas do Nucleocapsídeo de Coronavírus/química , Ésteres do Ácido Sulfúrico/farmacologia , Ésteres do Ácido Sulfúrico/química , COVID-19/virologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , RNA Interferente Pequeno/química , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/química , Genoma Viral , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/química
3.
Cell Mol Biol Lett ; 28(1): 86, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880612

RESUMO

BACKGROUND: Membrane rafts play a crucial role in the regulation of many important biological processes. Our previous data suggest that specific interactions of flotillins with MPP1 are responsible for membrane raft domain organization and regulation in erythroid cells. Interaction of the flotillin-based protein network with specific membrane components underlies the mechanism of raft domain formation and regulation, including in cells with low expression of MPP1. METHODS: We sought to identify other flotillin partners via the immobilized recombinant flotillin-2-based affinity approach and mass spectrometry technique. The results were further confirmed via immunoblotting and via co-immunoprecipitation. In order to study the effect of the candidate protein on the physicochemical properties of the plasma membrane, the gene was knocked down via siRNA, and fluorescence lifetime imaging microscopy and spot-variation fluorescence correlation spectroscopy was employed. RESULTS: EFR3A was identified as a candidate protein that interacts with flotillin-2. Moreover, this newly discovered interaction was demonstrated via overlay assay using recombinant EFR3A and flotillin-2. EFR3A is a stable component of the detergent-resistant membrane fraction of HeLa cells, and its presence was sensitive to the removal of cholesterol. While silencing the EFR3A gene, we observed decreased order of the plasma membrane of living cells or giant plasma membrane vesicles derived from knocked down cells and altered mobility of the raft probe, as indicated via fluorescence lifetime imaging microscopy and spot-variation fluorescence correlation spectroscopy. Moreover, silencing of EFR3A expression was found to disturb epidermal growth factor receptor and phospholipase C gamma phosphorylation and affect epidermal growth factor-dependent cytosolic Ca2+ concentration. CONCLUSIONS: Altogether, our results suggest hitherto unreported flotillin-2-EFR3A interaction, which might be responsible for membrane raft organization and regulation. This implies participation of this interaction in the regulation of multiple cellular processes, including those connected with cell signaling which points to the possible role in human health, in particular human cancer biology.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Microdomínios da Membrana , Proteínas de Membrana , Humanos , Membrana Celular/metabolismo , Fator de Crescimento Epidérmico , Células HeLa , Ligação Proteica , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Membrana/metabolismo
4.
Obes Facts ; 12(5): 554-563, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31639803

RESUMO

INTRODUCTION: A rational way of nourishment, combined with adequate physical activity, are the basic components of maintaining proper body condition. OBJECTIVE: The aim of the study was to evaluate nutritional status among children and adolescents with different levels of physical activity. METHODS: The study group consisted of 1,013 students of both genders aged between 7 and 18 years attending elementary and post-primary schools (general and sports profile) in Siemianowice Slaskie. RESULTS: The crude body mass index (BMI) values ranged from 12.78 to 35.3. Body mass within the limits of arbitrary standard referred to 70% of the examined group, overweight or obesity was found in over 25%. Percentage of body fat (FATP) values ranged from 5.7 to 45.2%. CONCLUSIONS: A significant number of children and adolescents were overweight or obese based on BMI categories and FATP values. Overweight and obesity were most common among younger children, particularly boys. Higher torso FATP levels were more common among sports-oriented class students. BMI is not a good tool for the determination of the nutritional status of children and adolescents, while the bioelectric impedance method enables one to conduct a precise analysis of adipose tissue content and location. Sports-oriented elementary school students from the study group were characterized by higher FATP values.


Assuntos
Exercício Físico/fisiologia , Avaliação Nutricional , Estado Nutricional/fisiologia , Obesidade Infantil , Tecido Adiposo/metabolismo , Adolescente , Composição Corporal/fisiologia , Índice de Massa Corporal , Criança , Feminino , Humanos , Masculino , Sobrepeso/diagnóstico , Sobrepeso/epidemiologia , Sobrepeso/metabolismo , Sobrepeso/fisiopatologia , Obesidade Infantil/diagnóstico , Obesidade Infantil/epidemiologia , Obesidade Infantil/metabolismo , Obesidade Infantil/fisiopatologia , Polônia/epidemiologia , Instituições Acadêmicas/estatística & dados numéricos , Esportes/estatística & dados numéricos , Estudantes/estatística & dados numéricos
5.
Folia Histochem Cytobiol ; 57(2): 43-55, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31099889

RESUMO

Biological membranes are organized in various microdomains, one of the best known being called membrane rafts. The major function of these is thought to organize signaling partners into functional complexes. An important protein found in membrane raft microdomains of erythroid and other blood cells is MPP1 (membrane palmitoylated protein 1)/p55. MPP1 (p55) belongs to the MAGUK (membrane-associated guanylate kinase homolog) family and it is a major target of palmitoylation in the red blood cells (RBCs) membrane. The well-known function of this protein is to participate in formation of the junctional complex of the erythrocyte mem-brane skeleton. However, its function as a "raft organizer" is not well understood. In this review we focus on recent reports concerning MPP1 participation in membrane rafts organization in erythroid cells, including its role in signal transduction. Currently it is not known whether MPP1 could have a similar role in cell types other than erythroid lineage. We present also preliminary data regarding the expression level of MPP1 gene in several non-erythroid cell lines.


Assuntos
Proteínas Sanguíneas/metabolismo , Membrana Celular/metabolismo , Eritrócitos/metabolismo , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Sanguíneas/genética , Colesterol/metabolismo , Humanos , Fluidez de Membrana/fisiologia , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/genética , Ligação Proteica
6.
Folia Histochem Cytobiol ; 43(2): 117-20, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16044949

RESUMO

PNH is a rare clonal disorder of hematopoietic stem cells, therefore all blood cells lineages are involved. The main feature is an increased sensitivity of erythrocytes to complement-mediated cell lysis due to deficiency of membrane-bound GPI (glycosylphosphatidylinositol)-anchored proteins which normally function as inhibitors of reactive hemolysis. In the present study, we performed flow cytometric analysis using monoclonal antibodies against CD55 and CD59 for the detection of PNH-type clone in the blood of 50 patients (28 females and 22 males, age range 7-67 yrs). In one patient only we found a large population (95%) of granulocytes with decreased expression of both CD55 and CD59 molecules (type I PNH) and in two others with partial loss of CD55 expression (type II PNH). The expression was determined chiefly on granulocytes which in the control group showed reliable and high expression of CD55 and CD59.


Assuntos
Antígenos CD55/sangue , Antígenos CD59/sangue , Hemoglobinúria Paroxística/imunologia , Adolescente , Adulto , Idoso , Criança , Eritrócitos/imunologia , Feminino , Citometria de Fluxo , Granulócitos/imunologia , Hemoglobinúria Paroxística/sangue , Humanos , Masculino , Glicoproteínas de Membrana/imunologia , Glicoproteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Monócitos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA